COLUMN HOR HIS PROPERTY OF THE PARTY OF THE

社会連携シーズ集 2022

- 人文社会科学部
 - 教育学部
 - 情報学部
 - 理学部
 - 1学部
 - 農学部
 - 地域創造学環
- 大学院・研究所・センター等

社会連携シーズ集 2022

目次

(五十音順)

人文社会科学部

1	伊	東	暁	人	人文社会科学領域	教授	6
2	大	原	志	麻	人文社会科学領域	教授	7
3	荻	野	達	史	人文社会科学領域	教授	8
4	貴	\blacksquare		潔	人文社会科学領域	准教授	9
5	篠	原	和	大	人文社会科学領域	教授	10
6	篠	原	和	大	人文社会科学領域	教授	11
7	堂	有	俊	彦	人文社会科学領域	教授	12
8	藤	井	真	生	人文社会科学領域	教授	13
9	藤	井	真	生	人文社会科学領域	教授	14
10	松貴	本田	和	明 潔	人文社会科学領域	准教授 准教授	15
11	Ш	固	拓	也	人文社会科学領域	教授	16
12	若	松	泰	之	人文社会科学領域	准教授	17

教育学部

1	赤	\blacksquare	信	_	教育学領域	准教授	20
2	伊	藤	宏	_	教育学領域	准教授	21
3	内	Ш	秀	樹	教育学領域	講師	22
4	鎌	塚	優	子	教育学領域	教授	23
5	熊	野	善	介	教育学領域	特任教授	24
6	郡	司	賀	透	教育学領域	准教授	25
7	杉	﨑	哲	子	教育学領域	教授	26
8	\blacksquare	宮		縁	教育学領域	教授	27
9	中才	村美	智太	郎	教育学領域	准教授	28
10	藤	井	基	貴	教育学領域	准教授	29
11	藤	井	基	貴	教育学領域	准教授	30
12	藤	井	基	貴	教育学領域	准教授	31
13	室	伏	春	樹	教育学領域	講師	32

1

情報学部

1	大	瀧	綾	乃	情報学領域	講師	34
2	大	本	義	正	情報学領域	准教授	35
3	スー	-タ-	- · [ノイ	情報学領域	助教	36
4	杉	浦	彰	彦	情報学領域	教授	37
5	杉	Ш	岳	弘	情報学領域	教授	38
6	竹	内	勇	剛	情報学領域	教授	39
7	永	吉	実	武	情報学領域	教授	40
8	西	\blacksquare	\blacksquare	史	情報学領域	准教授	41
9	西	村	雅	史	情報学領域	教授	42
10	峰	野	博	史	情報学領域	教授	43
11	森	\blacksquare	純	哉	情報学領域	准教授	44
12	Ш	本	泰	生	情報学領域	准教授	45

理学部

1	木	村	浩	之	理学領域	教授	48
2	後	藤	寛	貴	理学部	テニュアトラック助教	49
3	三重	重野		哲	理学領域	教授	50
4	Ш	本		歩	理学領域	教授	51

工学部

1	犬	塚	博		工学領域	教授	54
2	犬	塚		博	工学領域	教授	55
3	甲	斐	充	彦	工学領域	准教授	56
4	木	村	元	彦	工学領域	教授	57
5	小	林	祐	_	工学領域	准教授	58
6	真	\blacksquare	俊	之	工学領域	教授	59
7	島	村	佳	伸	工学領域	教授	60
8	武	石		薫	工学領域	准教授	61
9	17	畄	浩	_	工学領域	教授	62
10	<u>\pi</u>	JII	和	貴	工学領域	教授	63
11	藤	井	朋	之	工学領域	准教授	64
12	_	JII	雅	登	工学領域	准教授	65
13	=	JII	雅	登	工学領域	准教授	66
14	益	子	岳	史	工学領域	准教授	67
15	間	瀬	暢	之	工学領域	教授	68
16	水	嶋	祐	基	工学領域	助教	69
17	吉	\blacksquare	信	行	工学領域	准教授	70

農学部

1	加	藤	雅	也	農学領域	教授	72
2	加	藤	雅	也	農学領域	教授	73
3	木	村	洋	子	農学領域	教授	74
4	切	岩	祥	和	農学領域	教授	75
5	小八	谷	真	也	農学領域	准教授	76
6	中	塚	貴	司	農学領域	准教授	77
7	1	井	浩	文	農学領域	教授	78

地域創造学環

1	池	\blacksquare	恵	子	教育学領域	教授	80
2	水	谷	洋	_	人文社会科学領域	教授	81
3	ılı	木	墨	記	人文社会科学領域	准教授	82

大学院・研究所・センター等

光医工学研究科	1	佐々木	哲	朗	工学領域	教授	84
	2	佐々木	哲	朗	工学領域	教授	85
	3	佐々木	哲	朗	工学領域	教授	86
	4	佐々木	哲	朗	工学領域	教授	87
創造科学技術大学院	1	徳 元	俊	伸	理学領域	教授	88
	2	徳 元	俊	伸	理学領域	教授	89
	3	原	正	和	農学領域	教授	90
グリーン科学技術研究所	1	兼崎	Ì	友	グリーン科学技術研究所	特任助教	91
	2	近 藤		満	理学領域	教授	92
	3	道羅	英	夫	理学領域	准教授	93
	4	朴	龍	洙	農学領域	教授	94
	5	朴	龍	洙	農学領域	教授	95
大学教育センター	1	滑田	明明	暢	融合・グローバル領域	講師	96
学生支援センター	1	宇賀田	栄	次	融合・グローバル領域	教授	97
	2	生川	友	恒	融合・グローバル領域	准教授	98
情報基盤センター	1	永 田	正	樹	融合・グローバル領域	准教授	99
防災総合センター	1	原田	賢	治	融合・グローバル領域	准教授	100
教職センター	1	金子	泰	之	融合・グローバル領域	講師	101
地域創造教育センター	1	阿部	耕	也	融合・グローバル領域	教授	102
	2	石川	宏	之	融合・グローバル領域	准教授	103
	3	川崎	和	也	地域創造教育センター	特任助教	104
	4	山本	隆	太	融合・グローバル領域	准教授	105
サステナビリティセンター	1	鈴木	-	款	創造科学技術大学院	特任教授	106
	2	安富	通	希	融合・グローバル領域	講師	107
イノベーション社会連携推進機構	1	寺 嶋	芳	江	イノベーション社会連携推進機構	特任教授	108
国際連携推進機構	1	比留間	洋	_	国際連携推進機構	特任准教授	109
技術部	1	大 橋	和	義		技術専門職員	110
	2	増田	健	_		技術職員	111
•							

索引 114

人文社会科学部

情報システムの開発管理・評価、ソフトウェア産業と政策の分析

地方企業の経営戦略、分析

キーワード:経営戦略、情報システム、開発管理、ソフトウェア産業

1. 情報システムの開発管理・評価、情報化政策の分析

民間企業で情報システムの運用・企画・設計・開発等に携わり、大学に転じてからもシステム開発の方法論や 技法の適用と生産性の関連などを研究してきました。近年は海外でのソフトウェア開発(いわゆる「オフショア開 発」)における管理の問題を検討してきました。あわせて、地方においてソフトウェア開発などの情報サービス産 業をいかに振興させるか、政策との関係で考えています。

2. 地方企業の経営戦略

静岡県域を中心に産業振興と(中小)企業の経営戦略について、調査・研究を行ってきました。 (これまでのおもな研究プロジェクト)

- ・「構造改革」下における地方企業の経営戦略
- ・静岡県における中小企業の下請構造分析と先駆的メッシュ化企業の特徴
- ・地方地場産業のブランド化ー静岡の家具産業を事例に一
- ・地方中小企業における情報化の進展と地域ソフトウェア産業の相互発展に関する研究

関連書籍等:

伊東編著『現代社会と企業』、学術図書出版社(2021年)

木嶋・岸・伊東他『経営情報学入門』、放送大学教育振興会(2019年)

岸・相原・伊東他『情報技術を活かす組織能力 ITケイパビリティの事例研究』、中央経済社(2004年)

田島・伊東他『現代の企業倫理』、大学教育出版(2007年)

山下・石橋・伊東他『はじめよう経済学のための情報処理(第4版)』、日本評論社(2014年)

・静岡大学に奉職して早いもので29年、これまでも地域に関わりのあることを官民問わずいろいろとやらせて いただいております。

どんなことをやっているか&どんな人間かは、静岡大学TVの研究者紹介をごらんください。

https://sutv.shizuoka.ac.jp/video/9/74

社会連携へ向けたアピールポイント

伊東 暁人 学術院人文社会科学領域 経済・経営系列 教授

その他の社会連携活動

・静岡県マルチメディア懇話会座長、静岡市「しずおかフロンティアカレッジIITビジネス 講座講師、静岡県システム開発等委託業務評価委員、静岡市情報化構想審議委員会副会長、 デジタルメディアの行政活用と産業振興に関する懇談会委員、地方自治体・大学等の情報 システム評価審査委員(多数)、中小企業庁JAPANブランド育成支援戦略策定委員会委員、 経営情報学会理事、静岡県中部未来懇話会研究委員、等を歴任。

- ・情報システムの開発管理、導入のための評価
- ・企業等における経営戦略の立案、検討
- ・ICTスキル&マインドを持った経営人材の育成

社会連携へ向けたアピールポイント

【研究テーマ】

発酵食品・飲料をサステナブルな地域社会のコモンズにするための試み

キーワード:発酵、歴史文化、社会実装、技術開発、内発的発展

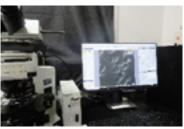
発酵とサステナブルな地域社会研究所

・発酵飲料・食品をめぐる地域文化を素材として、サステナブルな地域社会の発展に向けた可能性や課題につい て取り組みます。その第一段階として、身近なハーブをホップの代わりに用いた中世のグルートビールに倣っ て、静岡の植物を素材とする和ハーブビール商品の開発を目指しています。こうした取り組みに際しては、以 下のように学際的に取り組みます。

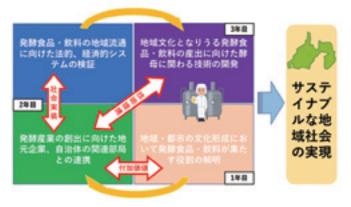
1)人文科学:歴史や文学の中の発酵飲料・食品を探り、地域や都市の文化形成に及ぼした影響を明らかにし ます。また、物語が商品に与える付加価値も検証します。

2)社会科学:発酵飲料に随伴する税制や法整備への課題を考察し、開発された商品を現実社会に流通させる ための課題を法律的な検証と経済的対策を検討します。

3) 自然科学:静岡の花々から酵母を単離するなど、地域文化となりうる発酵飲料・食品の産出に向けた新た な素材の探究と技術開発をおこないます。


研究所HP

研究所FB



2021年8月に行ったグルートレシピの再現実験の様子

- ・地域素材を用いた発酵飲料・食品の開発に、幅広い学問分野の知見をもって取り組むことができます。第一段 階として和ハーブビールの開発に従事していますが、日本酒なども取り上げていく予定です。関心があるテー マをお寄せいただければ、商品開発に協力することができます。
- ・研究成果は公開講座やシンポジウムなどを通じ て、社会に還元していく予定です。企業のみな らず、市民のみなさんにも参加していただくこ とができます。
- ・静岡県工業技術研究所やふじのくに地球環境史 ミュージアム、静岡市経済局農林水産部など、 自治体や関連機構と協力して地域振興に貢献し ます。

プロジェクト研究所 所長

大原 志麻 学術院人文社会科学領域 言語文化系列 教授

研究所メンバー

竜也

・藤井 真生 国京 則幸 丑丸 敬史 南 健悟 小島 直哉 ・安永 愛 板倉美奈子 木村 洋子 佐藤洋一郎 宮本 秀男

健二

大貝

川瀬 ・鈴木 実佳 憲子 望月 正隆 三木 義一

正志

佐藤

相談に応じられる関連分野

発酵飲料・食品にまつわる、

ヨーロッパ史/ヨーロッパ文学/税法/法哲学/海 商法・商法/社会保障法/地方財政論/国際経済法 /人文地理学/農芸化学/細胞生物学など

勝山

プロジェクト研究所の概要

へ向けたアピールポイント

□ 個人研究者 【研究テーマ】

静岡地域における若年層の雇用・就労環境が人口動態に与える影響の 包括的分析と提言

キーワード:人口減少・人口流出、雇用・就労環境、若年層

「人口動態と就労環境|研究所

「サスティナブルな地域社会」を実現するには、 一定の人口を維持すること、それも年齢層的に バランスの取れた人口構成を維持していくこと が求められるところです。しかし、近年、静岡 県においてはとくに若年層の人口流出が危機感 を持って受け止められています。

人口動態には出生率に関わる自然増減と人々の 地域間移動に関わる社会増減との二側面が問題 となります。両者は関連しており、若年層の社 会減(流出)は当然自然減にも繋がります。その ため、この研究所ではとくに「静岡地域におけ る若年層の雇用・就労環境が人口動態に与える 影響の包括的分析と提言」を研究テーマとして 掲げています。

こうした状況が生じてくる背景は複雑なものであ り、そして対策は包括的なものである必要がありま す。そのため、私どもは**学際的な分析と提言がなし** うるように経済学・法学・社会学の研究者からなる チームを組織し2021年10月よりプロジェクト研究 所として活動を開始しました。

①共同調査

私たちは統計分析と質的分析の専門家からなる 集団です。各自治体における人口動態のメカニズ ム、なぜ若い人々は県外、あるいは県下の他の自 治体に移住していくのか、そこに進学や雇用・就 労環境はどのように関わっているのか、さらにそ うした動向と出生率はどのような形で関連してい るのか。そうしたことを、まずは**各自治体の関心** ともすり合わせながら、協働的に詳細な調査を行 い調べていきたいと考えています。②の提言やモ デル事業につながるエビデンスづくりがここでは 目指されることになります。

②提言とモデル事業への展開

調査結果をもとに自治体、経済団体、NPOな ど、この問題に関心のある各種地域団体とアイデ アを出し合い、協議を重ね、実際に取り組める対 策や制度づくりを提言していくことを目指してい ます。

大学が足りない(では新設する?)、若者に魅力 的な産業が足りない(誘致する?)といった大雑把 な議論ではなく、子どもや若者はもちろん、中高 年齢層にとっても住心地のよい地域としての魅力 を向上させる、細やかで継続できる方策を考え出 <u>し、各所でモデル事業も試みたい</u>ところです。

プロジェクト研究所 所長

荻野 達史 学術院人文社会科学領域 人間・社会系列 教授

研究所メンバー

人文社会科学部 ・教授 上藤 一郎 ・教授 国京 則幸 ・教授 吉田 崇 ・准教授 本庄 淳志 ・准教授 松原 仁美 学生支援センター 教授 宇賀田 栄次

- ・社会調査(各種統計調査、質的調査)
- · 就労支援、若者支援
- · 労働法、社会保障法

社会連携へ向けたアピールポイント

【研究テーマ】

□旧制静岡高等学校関係資料の整理・展示

キーワード:旧制静岡高等学校、静岡大学人文社会科学部・理学部、大学アーカイヴズ

・1922年に設置され、翌年に開学した旧制静岡高等学校は、静岡大学人文社会科学部や理学部の前身の一つに当たります。静岡市大岩にあった旧制静岡高等学校の校舎(戦後は静岡大学文理学部として使用されました)はすでに取り壊されてしまいましたが、同校の事務や学生寮、校友会などに関する資料の多くは、現在も静岡大学人文社会科学部に所蔵されています。このプロジェクト(主管は静岡大学人文社会科学部大学アーカイヴズ委員会)では、主に以下のような活動をこれまで行ってきました。

詳細

- ・資料の整理: 貴重な資料を永く遺していけるように、資料目録を作成しました(その概要については戸部健「旧制静岡高等学校関係資料の整理作業に関する経過報告」(『地域研究』創刊号、2010年)をご覧ください)。その上で、現在、各資料を中性紙封筒に入れる作業を継続しています。また、資料のなかには、写真も多く含まれています。プロジェクトではそうした写真をデジタル化し、利便性を高めました。
- ・資料の公開:資料の内容を広く知っていただくために、写真資料の一部、および『庶務課日誌』の一部を整理し、資料集として刊行しました(『旧制静岡高等学校関係写真目録』、『旧制静岡高等学校関係写真帳』、『静岡大学人文社会科学部所蔵旧制静岡高等学校・静岡大学大岩校舎関係写真帳』第1~3集、『旧制静岡高等学校 大正十二年庶務課日誌』『旧制静岡高等学校 大正十三年庶務課日誌』)。また、人文社会科学部A棟ロビーにて、年1、2回程度資料展示を行っています。さらに、資料の利用を希望された方々に対しては、申請いただいた上でこれまで個別に応じてきました。
- ・1922年に設置され、1949年に閉校(静岡大学文理学部の改組)されるまで、旧制静岡高等学校では多くの学生が学んできました。また、日本人・外国人を問わず様々な教職員がそこで働いてきました。そうした人々の子孫、および関係者の皆様からは、今でもたびたび資料閲覧の希望をいただきます。そのような依頼には、今後もできる限り応えていきたいと思っています。
- ・旧制静岡高等学校は、戦前期静岡における最高学府の一つであったため、その影響は学外にも広く及んでいました。つまり、近代静岡の歴史を構成する上で無視できない要素であると考えます。それとの関連で、旧制静高の資料が、第二次大戦期の静岡の様子をうつすものとして、マスコミに紹介されたこともありました(「旧制高校生 戦時下の青春」『朝日新聞』静岡版、2021年8月23日)。今後も、静岡の歴史に関する教育、研究、さらには広報活動などにおいて、旧制静高の資料が広く利用されることを、我々としても願っています。

食事を囲む旧制静高の教員と学生(1939年、旧制静高資料49-82-005)

プロジェクトリーダー

貴田 潔

学術院人文社会科学領域 人間・社会系列 准教授

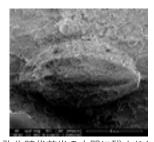
■ プロジェクトメンバー

- ・岩井 淳・貴田 潔・小二田誠二・篠原和大
- ・戸部 健・橋本 誠一・藤井 真生 ・松本 和明
- ・山岡 拓也

■ 相談に応じられる関連分野

・旧制静岡高等学校関係資料の利用

【代表的な研究テーマ】


日本列島における農耕の起源と展開

登呂遺跡を活用した初期農耕社会の実験考古学

キーワード: 弥生時代、農耕、弥生土器、登呂遺跡、遺跡活用

・日本列島における農耕の起源と展開

人類史における農業の開始は、複雑で組織化された社会形成の起点となる大きな 画期であったと考えられます。日本列島では弥生時代に大陸から稲作がもたらされ ることにより農業が形成されたと考えられてきました。しかし、近年では畑作など を含んだ複合的な農耕形成やその地域差が注目されています。弥生時代前後頃の遺 跡の調査や資料の分析をとおして日本列島や静岡における農業とそれを基盤とする 社会の形成過程について研究しています。

弥生時代前半の土器に残された 「コメ」圧痕の電子顕微鏡写真

登呂遺跡復元水田での栽培実験

・登呂遺跡を活用した初期農耕社会の実験考古学

静岡市登呂遺跡は、弥生時代のムラと水田が一体となって発見され、その農耕 集落の姿が当時と同じように復元された特別史跡です。そこでは等身大で当時の 農業の姿を再現することができます。当時使われた木製農具などを出土遺物に忠 実に復元して使用しながら復元水田での栽培実験を行うこと(=実験考古学)を通 して、初期農耕社会の実態について研究しています。

・遺跡(文化遺産)の保存と活用

遺跡は正しく歴史を知るうえで欠くことのできない国民共有の財産です。登呂遺跡のように、復元整備され た遺跡は、生の歴史を知る場として極めて高い価値を有していて、広く市民の皆さんに体験学習や生涯学習の 機会を提供します。そのような遺跡の活用についても考えています。

- ・静岡県の重要遺跡調査事業や自治体史の編さんなどとかかわって古墳や遺跡の調査・研究を実施してきまし た。富士市浅間古墳、静岡市神明山1号墳、東伊豆町大川石丁場遺跡、荘館山古墳群、鬼岩寺中世墓地、花蔵 城跡の測量・発掘調査など。一部は静岡大学受託研究として実施しました。
- ・各自治体の文化財保護審議会委員、史跡整備の委員会委員、文化財保存活用地域計画に関わる懇話会、自治体 史の編さん委員(藤枝市史)など地域の文化財の保存・活用に関わる組織の委員を務めて、助言等を行っていま す。下の委員のほか、登呂遺跡再発掘調査指導委員、登呂博物館協議会会長なども務めました。
- ・弥生・古墳時代の歴史や地域の歴史に関する公開講座や講演会等の講師を担当しています。
- ・登呂遺跡を活用した研究プロジェクトを農学・地質学などの研究者とともに実施したり、全国の史跡公園と連 携したプロジェクトを展開したりしています。こうした活動は登呂遺跡の文化遺産としての価値をさらに高め るとともに、現代社会の中での持続的価値観の創造や生涯学習の機会の創出などの活用をはかることを目標と しています。

社会連携へ向けたアピールポイント

学術院人文社会科学領域 人間・社会系列

その他の社会連携活動

- · 静岡県文化財保護審議会委員
- · 静岡市文化財保護審議会会長
- · 藤枝市文化財保存活用地域計画策定懇話会委員
- · 富士宮市史跡大鹿窪遺跡整備委員会委員

ほか

- ・遺跡の学術調査・研究
- ・文化財の保護・活用
- ・史跡・文化遺産の活用・教育普及

社会連携へ向けたアピールポイント

【研究テーマ】

□ 登呂遺跡を舞台とした持続的農耕文化の復元とその活用の研究

キーワード: 登呂遺跡、実験考古学、文化遺産、活用

・登呂遺跡は、国の特別史跡に指定された弥生時代の農耕集落の遺跡です。村 は約2000年前に作られ、100年以上にわたって持続して10万㎡を超える水 田を営み、洪水によって集落が埋没した後も水田を復興させ経営を続けたこ とがわかっています。歴史的にも著名な登呂遺跡ですが、平成の再発掘調査 に基づき現在は史跡公園として村の姿や水田も発掘された位置に同じ規模形 状で再現整備されています。

復元された登呂遺跡の集落と水田

弥生時代の水田を再現しての栽培実験

・本研究プロジェクトは、登呂遺跡の現地で再現された実験水田で、考古学的 に復元された当時の道具と推定される技術を用いて水稲耕作栽培実験を行 い、その過程と結果を考古学や歴史学、農学、作物学、土壌学、環境科学な どの自然科学の手法を用いて正しく評価しようとするものです。

・その成果は、考古学・歴史学的な弥生時代社会の実態解明だけではなく、農 学研究にも投射可能と考えられ、陸の豊かさを守る目標につながります。ま た、現在の都市環境の中にある登呂遺跡を舞台として、その文化遺産として の価値が高められ、多くの様々な世代の人が参加可能な多様な生涯学習等の 機会を創出することにもつながります。

実験水田の土壌調査の様子

- ・静岡大学サスティナビリティ―センター令和3年度SDGsに関する共同研究助成に研究タイトル「登呂遺跡を 舞台とした持続的農耕文化の復元とその活用の研究」として採択された共同研究プロジェクトです。
- ・静岡市登呂博物館との連携のもと特別史跡として整備された水田や周辺環境で栽培実験や諸課題の検討を行っ ています。学術的成果だけではなく、博物館コンテンツの価値向上、参加・体験型のプログラム立案など、よ り高度の史跡の活用や生涯学習機会の創出を目指しています。
- ・全国に展開する弥生・古墳時代の農耕関連遺跡の史跡公園と連携して栽培実験の比較研究を進めるプロジェク トも進行中(https://sites.google.com/view/suidenproject/)で、本プロジェクトもそこで主要な役割を果 たしています。
- ・関連科研費:基盤研究(B) 令和2~6年度[日本列島農耕開始・定着期における農耕文化複合の比較考古学的研 究」(代表者:篠原和大)

プロジェクトリーダー

和大 篠原

学術院人文社会科学領域 人間・社会系列 教授

プロジェクトメンバー

- ・貴田潔(人文社会科学部)・稲垣栄洋(農学部)・西川浩二(農学部)
- ・木嵜暁子(理学部)・宮澤俊義(キャンパスミュージアム)
- ・山本千尋(キャンパスミュージアム) ・松田順一郎(関西大学)
- ·梶山裕倫(静岡市登呂博物館·学芸員)

- ・登呂遺跡での稲作体験と関連した諸活動
- ・全国の史跡公園・博物館相互の連携
- ・遺跡・地域遺産の保護・活用

□ 話し合いにもとづく倫理的問題解決のための基盤構築

| 効果的・効率的な研究倫理審査体制の構築

キーワード: 医療倫理、研究倫理、倫理コンサルテーション、対話

話し合いにもとづく倫理的問題解決のための基盤構築

医療や福祉の領域において、患者・利用者や専門職は、しばしば 困難な問題に直面します。こうした場合に、当事者の対話を促進し、 問題の解決を支援する上で有効と考えられてきたのが「倫理コンサ ルテーション」です。しかし日本では、導入・運営のための方法・ ノウハウが共有されずにいました。そこで、共同研究を通じて、海 外の状況も踏まえつつ、日本での導入・運営に必要な知見を書籍と して出版しました。現在は在宅医療において同様の活動を実現する ために研究を行っています。

編集・執筆した倫理コンサルテーションに関する書籍

効果的・効率的な研究倫理審査体制の構築

現在、研究参加者の協力のもと行われる研究の多くが、行政指針や学会の論文投稿規程にもとづき、所属機関の研究倫理審査委員会に申請されるようになっています。こうした傾向は、基本的には望ましいものの、本来審査不要なものまで申請されることにより、委員会に大きな負担をもたらしています。「静岡大学人を対象とする研究倫理委員会」の委員・委員長の経験を踏まえつつ、研究参加者、申請者(研究実施者)、委員会すべてにとって望ましい審査体制の構築を目指して調査・研究を行っています。

医療倫理・研究倫理に関する教育

「倫理」という言葉だけで「難しい!」と身構えてしまう人も多いと思いますが、できるだけ分かりやすく、具体的な事例を用いながら、医療倫理・研究倫理のエッセンスをお伝えします。

倫理コンサルテーション・研究倫理審査委員会運営に関する相談

「研究倫理審査委員会が形骸化している」、「行政の倫理指針が難しくてどのように 理解すればよいか分からない」など、倫理に関する組織の導入・運営にともなう問題 があればご相談ください。

個別の倫理的課題への対応

社会連携へ向けたアピールポイン

個人情報を扱わない形で個別事例の相談にも対応しています。医師・看護師・倫理 学者からなるチームで対応することもできますし、地域の医療・ケア従事者が参加す る「しずおか倫理カフェ」(⇒)で話し合うこともできます。

2ヶ月に一回、 地域の医療・ケア従事者と 具体的な問題について 話し合っています。

■ その他の社会連携活動

- ・特定非営利活動法人 ヒューマン・ケア支援機構 副理事長
- ・学校法人北里研究所 北里大学 白金治験審査委員会委員
- ·国立研究開発法人 理化学研究所 横浜事業所 研究倫理委員会委員 他

堂囿 俊彦

学術院人文社会科学領域 人間・社会系列 教授

- ・医療倫理
- 研究倫理倫理教育
- 研究室HP ⇒ 最新情報をご覧 いただけます。

人文社会科学部

中世ヨーロッパ史研究

図像資料の歴史教材化

キーワード:中世ヨーロッパ、チェコ、図像資料、歴史教育

中世ヨーロッパ史研究

具体的な専門は中世チェコ史になりますが、サブテーマとして、 ①中世の民族意識、②植民運動、③聖人崇敬、④宮廷文化、⑤ 初期宗教改革、などもあつかっています。また、ポーランドや ハンガリーといった周辺の東中欧諸国、あるいはこの地域の近 現代史にも関心をもっています。

プラハの街並み(丘の上にみえるのはプラハ城)

中世図像資料の歴史教材化

現在、各国の図書館で中世ヨーロッパの図像資料のデジタル化 がすすめられています。教員志望の学生・大学院生とともに、 そうした図像資料の解読と、これを利用した世界史授業の構築 を模索しています。

社会連携へ向けたアピールポイント

図像資料に関する研究成果は 静岡大学のリポジトリから無 料で読むことができます。

静大TVでも、研究の概要を 紹介しています。ぜひご覧く

中世の彩飾写本(衣装や道具、身振りがわかる)

- ・中世ヨーロッパ社会は現代日本人にとっての異文化です。昨今ますます重要視されるようになった多文化共生 の実現に向けて、自分とは異なる文化や規範をもつ人々の理解を促進するために、歴史はとても良い材料とな ります。出張授業ではそうした内容を意識して教えています。
- ・教員を目指す学生・大学院生と、現役の社会科教員、大学教員の交流の場として、「地歴教員養成講座」を開催 しています。一般市民、高校生も参加することができます。これからはじまる世界史探究などの授業作り、高 校生の研究指導などもご相談ください。
- ・専門がチェコ史であるため、初級程度ならチェコ語講師をつとめることも可能です。
- ・一般向け書籍として、以下のものに関わっています。
 - ・執筆「ヤン・ジシュカ」『侠の歴史 西洋編・下』(清水書院)
 - ・「カール4世」『悪の歴史 西洋および中東編・下』(清水書院)
 - ・翻訳『中世仕事図絵』(八坂書房)
 - ・編著『大学的静岡ガイド』(昭和堂)

その他の社会連携活動

真生 藤井 学術院人文社会科学領域 人間・社会系列

- · 静岡歴史教育研究会
- ・発酵とサステナブルな地域社会研究所

- ・西洋史理解(異文化理解)
- ・社会科教育(研究授業作り、歴史探究科目)
- ・チェコ語/チェコ史/チェコ文化

プロジェクトの概要

社会連携へ向けたアピールポイント

【研究テーマ】

」地歴教員養成講座

キーワード:社会科教育、地歴公民、授業研究

中学校・高校の社会科教員を目指す学生・大学院生と若い講師、現役の教員、 大学教員の学びあいの場を構築しています(毎月1回)。

- 学生・大学院生、講師の模擬授業の場を設け、現役教員からアドバイスをもらうことにより、現場での教育力の向上を目指しています。
- すでに活躍されている教員のみなさんも互いの授業をみせあい、さまざまな授業法を学ぶことができます。内容は社会科にかぎらず、授業のユニバーサル・デザイン化などにおよぶこともあります。
- 大学教員が専門テーマを報告し、最新の研究状況や分析概念などの理解促進につとめています。また、教育現場で使える史資料を紹介することもあります。
- 教員採用試験対策もおこなっており、学生・大学院生だけではなく、本採 用を目指す講師の方々を支援しています。

世界教員 養成講座

中で教員 養成講座

中で教員 養成講座

中で教員 表の講座

A company of the form of the form of the form

A company of the form of the form of the form

A company of the form of the form of the form

A company of the form of the form of the form

A company of the form of the form of the form

A company of the form of the form of the form

A company of the form of the form of the form

A company of the form of the form of the form

A company of the form of the form of the form

A company of the form of the

この他、年2回の静岡歴史教育研究会も運営しています。

本プロジェクトに関心を持たれた方は、ぜひ歴史学・考古学コースのホームページにアクセス してください。これまでの概要や今後の予定などをご覧いただけます。

- ・歴史系の教員が中心になって運営していますが、高校地歴だけではなく、高校公民や中学社会の教育もあつかっています。また、教員だけではなく、自治体や新聞社、NPO法人代表などをお招きしてお話をうかがうこともあります。教員のみなさんからの要望があれば、講師をアレンジすることが可能ですし、逆に教員を前にして講演したい方のお申し込みも歓迎します。
- ・若手教員の研修の場として活用していただけます。
- ・歴史の学びなおしに興味があり、現役教員の授業を見学したいとい う一般の方も受け入れています。
- ・教員という職業に関心のある高校生もこれまで何人か参加しています。他校の現役教員と交流することもでき、職業理解を深めることができます。また、これからはじまる日本史探究/世界史探究などの授業作りに関する相談や、高校生の研究指導などへのアドバイスも可能です。

プロジェクトリーダー

■ プロジェクトメンバー

- ・藤井 真生
- ・戸部健

- ・研究授業の場の提供
- ・授業開発の協力

【研究テーマ】

プロジェクトの概要

社会連携へ向けたアピールポイント

地域の歴史・文化資源としての古文書の保全活動

キーワード: 歴史・文化資源、古文書、民間所在史料

- ・私たちの日本史学研究室では、地域に根ざした活動として、古文書の保全活動に取り組んでいます。具体的に は、一般の庶民によって書かれた古い紙の史料などを整理しています。
- ・これから少子化が進む社会では、地域の過去を物語る民間所在史料の保全が大きな課題となっています。とり わけ、過疎化や限界集落化が進む地方の集落では、旧家などで伝来してきた古文書について将来の散逸が危ぶ まれるものも少なくありません。
- ・そのような危機的な問題から、私たちの日本史学研究室では地域に残る古文書の保全に努めています。特に、 1988年からは静岡市と連携し、静岡市古文書調査事業を進めています。そうした協働的な活動を継続するな かで、市内の旧家や公民館に伝来してきた多数の史料群について整理・調査がなされ、少しずつですが、豊か な地域の過去が明らかになってきています。

クリーニング・修復・撮影などを含む古文書の保全活動

- ・地域に残された古文書は、社会の歴史や文化を語る上でかけがえのないものです。一度失われた紙の古文書は、 二度と甦ることはありません。
- ・グローバルな視野からみますと、日本列島では膨大な史料が民間のなかで残されてきました。日本社会におけ る古文書の残り方には、世界的にみても希有な豊かさがあります。その多くは、江戸時代から明治・大正・昭 和の間に一般の庶民が作成したものです。
- ・歴史の消失を防ぐため、先人たちの過去を雄弁に語る古文書を保全し、次世代へと伝えていくことは、私たち が持続可能な社会を築いていくために大切なことです。

プロジェクトリーダー

松本和明

学術院人文社会科学領域 人間・社会系列 准教授

貴田潔

学術院人文社会科学領域 人間・社会系列 准教授

プロジェクトメンバー

- ・松本 和明
- ・貴田潔

■ 相談に応じられる関連分野

・旧家や公民館など民間に残る古文書の保全

現代人的行動(人類の行動的現代性)

先史時代における狩猟採集民の技術適応

キーワード: 先史時代、初期現生人類、旧石器時代、縄文時代

■ 初期現生人類の研究

アフリカで20万年ほど前に誕生したホモ・サピエンス (現生人類) はおよそ3.8万年までに日本列島に到達して いたことがわかっている。ヒトが残したモノを研究する考古学の分野では、ホモ・サピエンスに特有の行動であ る現代人的行動について、世界中で研究が進められている。静岡県東部、愛鷹・箱根山麓は、この時代の日本有 数の研究フィールドであり、その研究成果は世界的にも知られつつある。現在は主に愛鷹・箱根山麓の遺跡から 出土した資料(主に石器資料)の研究に取り組み、初期現生人類の技術や資源利用について研究している。

複製台形様石器を用いた 投射・刺突実験の様子 愛鷹山麓にいた初期現生人類が 様々な工夫をして狩猟具を作っ ていたことがわかってきた

・研究と関連するこれまでの普及活動:

■ 講演

静岡大学の地域創造教育センターやキャンパスミュージアムの公開講座、ふじのくに地球環境史ミュージアム の講演会で、初期現生人類に関わる研究の成果や日本列島の旧石器時代や縄文時代に関わる研究の成果について 紹介した。

■ 展示

社会連携へ向けたアピールポイント

考古学研究室で毎年大学祭に合わせて開催している[考古展]で、発掘調査や研究の成果について学生とともに 準備して紹介した。また、類似した小企画展示を、ふじのくに地球環境ミュージアムと沼津市文化財センターで 実施させていただいた。

• 関連書籍等:

山岡拓也・池谷信之、静岡大学地域創造教育センター(編) 2018『静岡大学公開講座ブックレット10ふじのくにのホモ・ サピエンス~3万5千年前の遺跡から現代人的行動を探る~』 (※静岡大学学術リポジトリのHPでPDFファイルをダウンロー ドできます。)

ふじのくに地球環境史ミュージアム ホットトピックギャラリーでの展示

山岡 拓也

学術院人文社会科学領域 人間・社会系列 教授

その他の社会連携活動

- ・静岡市立登呂博物館協議会委員(2015年8月~2021年7月)
- ・講演や高校への出張授業

- ・先史時代に関する歴史教育
- ・先史時代に関する展示企画

社会連携へ向けたアピールポイント

人文社会科学部

基準財政需要額の評価・再検討

地方選挙の投票参加に関する研究

キーワード: 地方交付税、基準財政需要額、地方選挙、投票率

1. 基準財政需要額の評価・再検討

国から地方自治体に配分される補助金に地方交付税と言われる補助金があり、総額は毎年度17兆円前後です。 その総額が各地方自治体にいくらずつ配分されるのかを決める仕組みが、自治体別に算定される基準財政需要額 です。では、実際の基準財政需要額の算定は望ましいものなのでしょうか?これまでの研究では、経済学的な枠 組みで、かつ公平性の点から基準財政需要額の算定方法を評価してきました。また交付税で財源保障の対象とな る財政需要を、より精緻に自治体別に定量化する方法を提起し、基準財政需要額の算定方法に関して新たな知見 を提示してもいます。今後はさらに効率性の視点から地方交付税の望ましい配分のあり方を検討する予定です。

2. 地方選挙の投票参加に関する研究

地方選挙の投票参加の実態に焦点をあて、以下の①~③の分析を行ってきました。①合併が都市自治体の投票 率に及ぼした影響を明らかにする記述的分析、②同じ行政区域で行われる市長選挙と市議会選挙の投票率の比較 とその差とそのメカニズムを考察した研究、③都道府県議会選挙の選挙区定数と投票率の関係を検証する、とい う一連の研究です。③の分析では「定数が少ない選挙区ほど投票率が高くなり、定数が多い選挙区ほど投票率は 低い傾向にある ことなどを定量的に明らかにしました。さらに行政サービスの効率性指標と投票率の関係に注 目し、経済的側面から「投票率は本当に高いほうが望ましいのか?」という問いを、実証的に検討しています。

個別の研究テーマの内容は上記の通りですが、私の専門は財政学という分野で、国や地方自治体の財政(政府 の経済活動)を幅広く研究対象としています。その[財政]は新聞やテレビなどで見たり聞いたりすることは多い ですが、財政の仕組みや経済の予備知識がある程度ないと、財政問題の本質はもちろん、概略すら理解できない 場合が多いです。また日本経済は経済成長の低迷、少子高齢化、経済格差、グローバル化、そして東京一極集中(地 域間の経済力格差)などの問題に直面しており、こうした経済社会の現状を見据えて、「政府はどんな経済活動を 行うのが望ましいのか?」といった問題を考える必要があります。

こうした問題を考えるための基礎的な考え方を、政府支出のあり方や税制のあり方に焦点をあててレクチャー することは可能です。その際に経済学の基礎理論だけでなく、諸外国との国際比較、そして日本財政の歴史もで きるだけ踏まえて行います。

若松 泰之

学術院人文社会科学領域 経済・経営系列 准教授

その他の社会連携活動

- ・池田市総合計画審議会(大阪府池田市) 支援スタッフ
- ・政府や近畿税理士会姫路支部 研修会 講師 など

- ・現代財政の問題
- ・地方選挙の投票参加に関する実態

社会連携へ向けたアピールポイント

【代表的な研究テーマ】

□ 児童・生徒の喫煙・飲酒防止、大麻等の薬物乱用防止に関する教育実践研究

□ マインドフルネスとアンガーマネジメントを用いた健康教育に関する実践研究

キーワード: 喫煙・飲酒・薬物乱用防止教育、メンタルヘルス、健康教育、ヘルスプロモーション

1) 児童・生徒の喫煙・飲酒防止、大麻等の薬物乱用防止に関する教育実践研究

研究室の学生達と共に、児童・生徒の喫煙・飲酒防止、大麻等の薬物乱用防止に関する授業の開発を進めています。

研究室では、これまでに、静岡県内外において約2万3千人の児童・生徒を対象として、喫煙・飲酒、薬物乱用防止に関する指導を行ってきました。そこでは、喫煙・飲酒・薬物乱用防止に関する科学的な知識の獲得と共に、情報に流されないためのメディアリテラシーや社会的圧力への対処能力の育成、加えて、自尊感情の向上、良好な人間関係づくり、社

会の環境改善(ヘルスプロモーション)の視点を重視した授業を推進してきました。これからも、児童・生徒の健康の保持増進と人生100年時代を見据えた健康長寿の実現に寄与すべく、保健の授業の実践研究に取り組んでいきたいと考えています。

2) マインドフルネスとアンガーマネジメントを用いた健康教育に関する実践研究

ストレスの多い現代社会において、健康的な生活を過ごしていくためには、自分のメンタル(心の状態)を健康的に維持する能力が求められます。その能力を高めるための、"怒り"の感情を上手くコントロールする能力の向上や、"瞑想法"を用いた体験的な保健の授業(教育法)の開発に力を注いでいます。

健康に害をもたらす生活行動の改善に対して、いわゆる"脅し教育"だけで授業を進めてしまうと、学習者にその健康問題の当事者意識を薄れさせてしまう結果にいたり、個人における問題解決能力の低下や、社会環境を改善していこうとする活動意欲を低下させてしまう場合もあります。

私たちの授業の実践研究では、その弊害を払拭するため、健康の保持増進に関する科学的な知識の獲得とともに、児童・生徒の発達段階に応じながら、認知科学や人の行動科学の知見を教材に取り入れつつ、より効果的な保健の授業の開発を目指しています。

まず何より、学ぶことが楽しいと思えること、そして、かけがえのない命をいとおしく思える学びの体験を通して、児童・生徒の"生命尊重"の意識を高めていきます。現在のそして将来にわたり、すべての年齢において健康的な生活を確保し、福祉を促進する主体者となる児童・生徒を育てたいと考えています。

赤田 信一 学術院教育領域 保健体育系列 准教授

■ その他の社会連携活動

- ・(財)日本学校保健会 保健学習推進委員会 委員 平成8年度~平成16年度
- ・磐田市教育委員会 エイズ教育(性教育)推進地域事業委員会 委員 平成15年度~平成16年度
- ·富士市教育委員会 思春期保健検討委員会 委員 平成20年度~平成22年度
- ・静岡市教育委員会 静岡市立足久保小学校 評議委員 平成20年度~平成29年度
- ·静岡市教育委員会 静岡市体力向上専門家委員会 委員 平成21年度~現在
- ・静岡市健康福祉長寿局 静岡市タバコ対策応援団委員会 委員 令和3年度

- ・保健体育科教育学
- ・健康教育・性教育
- ・健康・安全な社会環境づくり(ヘルスプロモーション)

【代表的な研究テーマ】

近世ヨーロッパ史に関する研究 世界史・歴史教育に関する研究

キーワード: 近世ヨーロッパ史、世界史、歴史教育

戦争がなぜ生じどのように収まったのかに関心を抱いたことが歴 史を志す動機となったこともあり、一種の戦国時代といえるヨー ロッパの近世史を専攻するようになりました。特にこの時代最大規 模の混乱といえる三十年戦争を終息させたウェストファリア条約を 中心に、関連諸国の利害や平和を実現しようとした外交官たちの交 渉に焦点を当てて研究を進めています。

さらに現代の我々が先の大戦をどのように伝えていくべきか、 我々日本人と直接関係のない外国の歴史や世界史はなぜどのように 学ぶ必要があるか、[暗記]科目とされる歴史をどのように教えるか、 といった歴史の意味や教育の仕方についても、未来の教員を志すゼ ミ生たちとともに考えております。

1648年10月25日 オスナブリュック市庁舎前広場における 平和条約締結に関する告知 (19世紀レオンハルト・ガイ作。原画は第2次世 界大戦中に焼失している。パブリックドメイン)

歴史全般に言えることですが、過去と直接関係するすべを持たない現代人の我々がそれを考えることは、本来 理解し得ない他者へと接近する感性を磨き、直接見知ることができない存在への想像力を育むことにつながりま す。また、それを論述する作業の中で、一見関係ないように見える事実の因果関係を探求することを通じて、無 用の用を知り、複雑な社会を理解し対応する力や、新しい事物を発見する力、物事を有機的に結び付けて考える 豊かな発想力を鍛えます。何よりも歴史を作る主体は人間ですから、人間そのものに対する理解と愛情が深まる のではないでしょうか。以上の問題意識に立ち、これまでの具体的な活動としては、附属学校における共同研究 者として歴史分野の授業実践に関する助言や出張授業を行ったり、中高生からの歴史に関するインタビューに回 答したり、専門的な研究を世界史の授業教材として開発する研究論文を発表したりしてきました。

社会連携へ向けたアピールポイント

伊藤 宏二 学術院教育学領域 社会科教育系列 准教授

その他の社会連携活動

- · 教員免許状更新講習講師
- · 静岡大学教育学部附属島田中学校共同研究者
- ·静岡大学教育学部附属静岡中学校「探究」授業分担
- ・小学校教員資格認定試験問題作成委員(既に終了)

- ・世界史・西洋史に関して
- ・歴史教育に関して
- ・西洋史を舞台にした映画・ドラマ等の解説

社会連携へ向けたアピールポイント

「宇宙」を入り口にした物理・理科教育

キーワード:物理教育、理科教育、天文教育、人工衛星、X線天文学

子供達の関心・興味が強い宇宙から出発し、しかし、天文に 限らない基礎的な分野を科学技術や社会との関わりを明らかに しつつ学習できる理科教材の開発を、本来の専門であるX線天 文学の研究での経験を活かしつつ行っています。

現在は、近年打ち上げの進む超小型人工衛星の(本物とほぼ 同様の) デモ機を教材として、学校現場で実施可能な教育パッ ケージを開発することに取り組んでいます。子供達が"手の届 かない"科学技術の塊に感じる人工衛星を実際に"手に取り"、 自身が学ぶ理科やプログラミングでその仕組みを理解し、更に 様々な課題解決に活用できるという経験は、子供達と科学技術 との距離を縮め、理科への有用感を高める効果を持つと考えて います。実践による教育効果の測定も、静岡大学教職大学院・ 附属浜松中学校の教員等と協力しつつ進めています。更にこれ を踏まえ、受信実験専用の超小型衛星の開発を目指しています。

その他にも、天文データを利用した小学~大学における物 理・理科教材も開発しています。過去には、人工衛星電波受信 実験の高校物理教材化の研究を行いました。また、天文学一般 に関する講演や科学教室も実施しています。

人工衛星を題材とした、小中高生向けの科学教室の様子

JAXAの人工衛星計画に参加し、その中で得た経験を教材開 発に活かしています。

県内外の小学校・中学校・高校や科学館で実践を行い、受講 した児童・生徒の方だけでなく、教員の方からも好評を得てい ます。また、教育学部の学生もアシスタントとして参加し、理 科教員を目指す学生への実践的な教育の場ともなっています。

[小型衛星の科学教育利用を考える会]の実行委員の1人であ り、その中で培われた多彩な人々によるネットワークの支援を 受けつつ、研究を進めています。

中学生による衛星電波受信実験の様子

秀樹 内山 学術院教育学領域 理科教育系列 講師

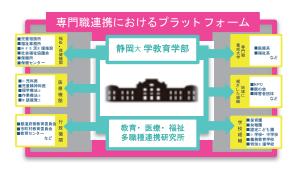
その他の社会連携活動

- ・「小型衛星の科学教育利用を考える会」実行委員 ・日本天文学会 教育委員
- ・静岡県教育委員会 教科等指導リーダー研修会 講師 (H26年度)
- ・富士市民大学 第23回前期ミニカレッジ 講師 (H29年度) ・教員免許更新講習 講師 (H27, H29年, R3年度)
- ・ディスカバリーパーク焼津天文科学館 中学生宇宙探求講座 講師 (H26-H29年度)
- ・志太教育研究集会 理科研究部 講演会 講師 (H30年度)
- ·富士市委託事業学校研修 助言 (H29-31年度)
- ・宇宙少年団焼津分団 天文講座 講師 (H30, R3年度)

- ・天文学、物理学
- 物理教育、天文・宇宙教育

【研究テーマ】

プロジェクトの概要


社会連携へ向けたアピールポイント

□ 教育・医療・福祉等における多職種・他機関連携のプラットフォーム構築

キーワード:多職種連携、他機関連携、教育、医療、福祉

- ■私たちの研究プロジェクトでは、教育学部教員を中心に、多職種・他機関の連携を進めています。
- ◆教育・医療・福祉系大学に加え、行政NPO等の専門職養成に関わる機関とも有機的に連携し、「チーム学校」の基盤となる連携・協働についての知識・感性を醸成することを目指しています。
- ◆地域に根ざした多職種連携のためのプラットフォームを創出しています。具体的には教育・医療・福祉シンポジウムの開催・専門職の研修・研究会を開催しています。
- ◆2022年度には本共同研究をベースに研究所の設立を実現します。これにより、地域の教育・医療・福祉の専門職同士が連携するためのプラットフォームとして地域貢献に寄与していきます。
- ■子どもを取り巻く社会の状況は年々厳しさを増し、子どもたちの心身の健康課題も深刻化・複雑化・多様化しています。新型コロナウイルス感染症の拡大が象徴するように、世界は今、VUCA時代を迎えています。
- ➡従来の方法・考え方の再構築、新たな知の創造により、この課題の解決を目指しています。
- →個別最適化の教育や学びの保証を含め、教育・医療・福祉の各分野の専門家が結集して、創造的な問題解決方法をテーマに、継続的に共同で研究しています。

●教育機関と連携したプログラム開発

- →各分野の専門家が研究を重ね、共同で教材を開発
- ⇒学生・専門職の養成・研修で活用
- ②教育・医療・福祉の各大学で相互に連携した授業実践
- ➡静岡大学教育学部の「教育の現代的課題科目群」で「医療と教育」プログラムをスタート
- ➡県内医療・福祉系大学等の専門科目の一部を相互に運営
- ❸教育・医療・福祉の各大学の学生による合同ゼミの開催
- →主にオンラインで定期的に開催し、専門職養成を深化
- ➡ネットワークを豊潤にし、長期的に知見を拡げられるプラットフォームを構築
- **ூ**多職種・他機関連携をテーマとしたフォーラムの開催
- ◆各分野での最新の取り組みと他分野の専門知を参加者にフィードバック
- ⇒新しい共同研究ネットワークを構築

ご相談・ご依頼は こちらから

プロジェクトリーダー

鎌塚 優子 学術院教育学領域 保健体育系列 教授

■ プロジェクトメンバー

- ・鎌塚 優子(教育学部・保健体育系列・教授)
- ・ヤマモト ルシア エミコ(教育学部・学校教育系列・教授)
- ・雪田 聡(教育学部・理科教育系列・准教授)
- ·中村 美智太郎(教育学部·学校教育系列·准教授)
- ・竹下 温子(教育学部・家政教育系列・准教授)

- ・自治体・教育委員会・学校との連携
- ・企業・教育機関等へのプログラム提供
- ・ご相談・ご依頼はQRコードからご連絡下さい

プロジェクトの概要

社会連携へ向けたアピールポイント

【研究テーマ】

□ STEAM教育改革;21世紀型の資質・能力を育む教育改革の理論と実践とは

□ 領域横断的な学習モデルの開発;エネルギー環境教育の展開;PBLの展開

キーワード: STEM教育、21世紀型資質・能力、エネルギー環境教育、課題解決型学習(PBL)

1. STEM教育改革の理論的・実践的モデルの開発

オープンイノベーションを日本の文脈で展開するために、学校教 育、学校外での教育システムに埋め込むための理論と実践を展開し ています。静岡STEMアカデミー(JSTジュニアドクター育成塾3 年間合格; 4年目の展開)、藤枝わくわく科学教室、山崎財団サイ エンス・スクール、ミネソタ大学STEM教育センターとの連携実践 研究、ダジック・アースを用いた実践教育研究、ディスカバリーパー ク焼津との連携。

2. 領域横断的な学習モデルの開発;エネルギー環境教育の展開;ESDsとPBLの展開

我が国における国家的な課題解決の主な一つとして「エネルギー 環境教育|があります。資源エネルギー庁から「日本のエネルギー| の中で、「3E+S」の考え方が提案されました。答えのない我が国 の課題を解決するためには、領域横断的で、主体的、対話的、深い 学びが必要です。(全国エネルギー教育推進連絡会議前議長、エネ ルギー教育推進連絡地域会議、エネルギー教育モデル事業として御 前崎教育委員会と連携、中部電力を初めとするエネルギー関連企業 SCRチームとの連携。静岡市環境大学カリキュラム検討委員等。)

- (1) JSTの次世代科学者育成事業に2回合格。また、JSTの予算が出なかった場合、学長裁量経費を獲得し、主 に小学校・中学校の児童生徒を対象に、8年間、熊野研究室の学部生、修士課程、博士課程の院生とともに、 様々な実践と実証研究が展開されてきました。基盤研究(B)(令和5年3月終了)の支援もあり、多くの国際会 議での発表、並びに、報告書が作成され、学位論文としても12件が世に出され、理論と実践の両面において、 アメリカのミネソタ大学、アイオワ大学、インドネシア国立教育大学、ジャンバル大学、ムラワルマン州立教 育大学、タイ王国力セサート大学と人事交流、研究交流、共同研究が展開されてきました。東アジア科学教育 学会の会長に3年間就任しました。京都大学とのダジック・アースプロジェクトを地球・宇宙STEM教育と位 置づけ、こちらも全国展開中です。
- (2) エネルギー環境教育は、答えのない複雑な課題解決を目指しています。全国10か所のエネルギー教育の地 方会議を展開し、それぞれの地域での課題解決を目指し、それぞれのプラットフォームを形成し、科学的な証 拠に基づいた、国家としての課題解決のためのプロジェクトを展開中です。大学、学校、企業が力を合わせて、 「主体的な学び」「対話的な学び」「深い学び」を目指すことにより、より持続可能な課題解決を目指しています。 昨年3月に議長として、「静岡市環境教育行動計画|を世に出しました。皆様の協力をお願いします。

プロジェクトリーダー

熊野 善介 静岡大学名誉教授 教育学部特任教授

STEAM教育研究所・静岡STEMアカデミー事業・熊野基盤研究(B)メンバー

・郡司 賀秀(科学教育)

・雪田 聡 (発生学)

・青木 克顕

·紅林 秀治(技術教育)

・大矢 恭久(放射線科学)

・楠 賢司 ・山根真智子

・柗本 新一郎(数学教育)

·山本 高広(科学教育) ・黒田 友貴(科学教育)

・吉村 有加

・竹内 勇剛(認知科学) · 伊藤 文彦(芸術教育)

· 坂田 尚子(科学教育)

・柳田 浩代

- ・STEAM教育の教材開発
- ・STEAM教育の研修(学校向け、企業向け等)
- ・児童・生徒・大学生の主体的な研究方略

【代表的な研究テーマ】

研究の概要

社会連携へ向けたアピールポイント

□ ものづくりとアートを組み入れた理科授業づくり

□ 学力調査で明らかになった課題に対応する理科教材開発

キーワード: 理科授業、ものづくり、アート、ICT

ものづくりとアートを組み入れた理科授業づくりを通して科学概念の理解を促します

- ・科学概念の理解には、観察・実験がとても大切です。
- ・しかし、観察・実験が苦手な子供たちもいます。
- ・日本の子供たちは人の役に立ちたい気持ちが強いといわれています。
- ・静岡県はものづくりが盛んで自然豊かな地域です。
- →ものづくりとアートから始まる、理科授業づくりを考えます。

私立大・企業と協同したものづくり

全国学力状況・学習調査で明らかになった児童の理科学力の課題に立ち向かいます

- ・「課題に正対したまとめ(考察)」に苦手意識のある子供たちもいます。
- ・静岡県の子供たちは、根拠をたくさん述べることができるといわれています。
- ・しかし、どの根拠が決定的なのかわかりません。
- →話し合い活動において、何をいわなくてよいのかがわかる教材を開発します。

子供たちは「工業」についてどのようなイメージを形成するのか明らかにします。

- ・理科教科書には、工業プロセス・工業製品が多数掲載されています。
- ・しかし、この教材から子供たちが実際に何を学んでいるのかわかっていません。
- →「工業」についてどのようなイメージを形成しているのか調べます。

ものづくりとアートを組み入れた理科授業づくり

- ・汎用的能力の「創造性」の育成もねらいとします。
- ・クラフトなどをとり入れて対象とする子供たちを拡げます。

地域の特産品を活かした理科教材づくり

天竜材、駿府城・浜松城の石垣を利用した理科教材を制作しました。

児童の理科学力の課題に立ち向かう

県内の小学校理科授業をみながら、ゲーム性のある教材を開発します。

理科授業における「工業」のイメージ形成

公益財団法人の研究助成を受けて、教材選択の原理を解明します。

連携企業·NPO法人

株式会社アイエイアイミニロボ事業推進室・NPO法人Cen 他多数です。

自然遊びに集中する子供たち

関連書籍等:郡司賀透、『理科教育における化学工業教材の意義と変遷』、風間書房、2019年。 平成30年度科学研究費助成事業(研究成果公開促進費課題番号18HP5227)により助成刊行しました。

■ その他の社会連携活動

- ・静岡市環境教育推進会議副議長
- ・株式会社アイエイアイミニロボ事業推進室アドバイザー
- ・NPO法人静岡STEAM教育推進センター副代表
- · 日本理科教育学会評議員
- ・日本エネルギー環境教育学会編集委員会編集委員

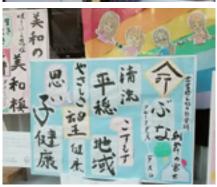
郡司 賀透

学術院教育学領域 理科教育系列 准教授

- ·理科教材開発
- ・理科テキスト研究
- ・理科カリキュラムづくり

教育学部

プロジェクトの概要


社会連携へ向けたアピールポイント

□ 繋ぐ・私たちの言葉 - 静岡を笑顔に - (しずおかハッピーシニアライフ事業)

キーワード:交流、短歌、筆文字、守りたい

- 私たち、静大国語学生(女子)の仲間 = [SDKGs] は、生涯にわたる健全な社会生活の実現を目指す静岡市高齢者福祉課の「しずおかハッピーシニアライフ事業」に共感し、次の活動を行いました。
- ◆ 【語る】 ~ 【飾る】 ~ 【綴る】 の流れで進めました。
- *対面での交流では、「守りたい」身近な自然、家族を、まず毛筆で 書いてもらい、それをテーマにして語り合い、短歌を作りました。 そして、この時に書いた「毛筆書:守りたい」を市街地に展示しました。
- *短歌は、手紙、faxやメールでの交流の方々のも含めて歌集にします。 「何気ない日常が、歌にすると一つ一つ輝いて見える。」「今まで、 自分のことを語ることはなかった。じっくり聞いてくれて、凄く嬉しく 思った。この出会いを大事にしたい。」との感想をいただきました。
- *毛筆書や短歌作りなどの創造的活動は認知予防に効果的です。
- *歌集がお手元に届けば、歌の世界に誘われ他の方の「思い」に共感し、新たな交流が生まれるでしょう。参加してくれた市内各所の100名を超えるシニアの方々との素敵な「出会い」に感謝しています。

大学生は学業とアルバイト等に時間を要して地域との交流の機会がほとんどなく、学生と高齢者や外国人、障がい者の方々とは、各々の生活のフィールドが区分けされている印象を受けます。しかし地域の方々から教わることは非常に多いのです。そこで杉﨑研究室では、これまでにも、学生が自らの学びを生かして社会貢献できるよう、筆文字を書くことや短歌、カルタを作るなどの言葉を大事にしたコミュニケーションの機会を数多く設定してきました。その経験から、授産所で働く方々や在住外国人(焼津市)との交流が、学生と相手の方との双方にとって、心豊かな生活に繋がる幸せな「出会い」になることを確信しています。今回は、シニアの経験知に触れる貴重な機会と考えて上記の活動を行いながら、みんなで「守りたい」(SDGs)について、じっくりと考えることができました。今後も、持続可能な社会の実現に向けて、異年齢、異文化、バリアフリーの交流等を積極的に進めていきます。

プロジェクトリーダー

杉﨑 哲子 学術院教育学領域 国語教育系列 教授

■ プロジェクトメンバー

田端美帆杉本真緒

・高橋 萌

・熊谷咲良

・鈴木有紀

・山田彩加音

(4年)

(2年)

・石黒花

・清水彩果 ・杉山桜蘭子 ・宮澤杏佳・川嶋桃子

・青木夢稀 ・給田優花 ・伊藤彩花

(3年)

■ 相談に応じられる関連分野

・国語、日本語支援

・書道、書芸術

ECONOMY

SOCIETY

【代表的な研究テーマ】

研究の概要

社会連携へ向けたアピールポイント

環境との相互作用の中で学ぶ教師教育

□ ノットワークする活動理論に基づく実証的研究

キーワード:環境、教師教育、実証的研究、ノットワーク

幼児教育学、生活科教育学、総合的学習の時間など環境との相互作用 の中で、総合的に学ぶことを研究の領域としています。特に、教育実践、 教育現場に軸足をおいた研究が中心で、現場の先生方や社会教育施設、 地域の人などとかかわりながら研究を進めてきました。

....

[How food connects all the SDGs.] Stockholm Resilience Centre より

https://knotworklab.com/

2020年、ESD(持続可能な社会の創り手を育む教育)の プラットフォームをめざし、「生物圏」、「社会」、「経済」の 各セクターにおける課題の俯瞰的に捉え、教育施設、行 政、企業、NPOなどを結びつける場として、Webサイト [knotwork lab] 開設しました。当ラボは、コロナ禍での オンラインとオフラインでの人の集まる実験場としての機 能も有しています。

knotwork labでは、

専門的な内容をさまざまな年齢や立場の方の興味や関心を喚起し、 わかりやすいことばで伝えることを得意としています。

【2021年度の主な連携事業の成果物の紹介】

①日本平動物園との連携プロジェクト

SDGsデジタル絵本『動物と一緒に地球の未来を考えよう』を10月 に刊行。 『どうぶつと いっしょに ちきゅうの みらいを かんがえよう』 にイラストやグラフ、「ワンヘルス」の概念を追加しました。対象年齢 は、小学校高学年以上。日本平動物園、knotwork labのHPより無料 でご活用いただけます。

- ②行政、企業、NPO法人との連携プロジェクト
- *静岡県教育委員会 「保育プロセスの質リフレクションシート活用研修事業」
- *富十市保育幼稚園課 「富士市教育・保育施設訪問指導事業」

など

縁 田宮

学術院教育学領域 学校教育系列 教授

その他の社会連携活動

・富士市子ども・子育て会議委員(2022年4月~) ・袋井市子ども・子育て会議委員(2021年 10月~現在)・富士市総合計画審議委員(2020年2月~2021年10月)・関東地方ESD活動支援セ ンター企画運営委員(2018年4月~2019年3月)・静岡県立遠江総合高等学校学校評議員(2018年 4月~現在)・静岡市教師塾講師(2017年~現在)・静岡県社会福祉審議会臨時委員(2014年3月~ 2015年5月)・静岡市日本平動物園運営委員会 委員(2009年4月~2014年3月) など

相談に応じられる関連分野

・講演会/研修会(幼児教育・生活科・総合的な学習の 時間、SDGs、ESDなど)・学校と企業・団体等をつなぐ ための調査研究・SDGs・ESDに関する啓発ツール、教 材の開発 など

社会連携へ向けたアピールポイント

【代表的な研究テーマ】

□ 情報倫理.道徳教育の研修

□ 美的教育の理論と実践

キーワード:情報倫理,道徳教育,ディスカッション,プレゼンテーション

■情報倫理,道徳教育・研修

高度化する情報通信社会・AI時代に生きる私たちに求められる情報倫理の問題を研究しています。

コンピュータ犯罪・ネット犯罪を含め、情報化社会における法的・倫理的な問題や、「情報革命」によってもたらされた社会構造の変革、表現の自由やプライバシーを含む情報倫理の課題に取り組んでいます。

また、現代の子ども像や学生像を分析する教育学の視点をふまえ、教育機関にICT環境を導入・運営していく際のコンサルテーションも行っています。

あわせて、考え、議論する道徳教育の理論と実践についての研究も進めており、道 徳科及び学校全体での道徳教育の充実を目指しています。

■美的教育の理論と実践

ドイツの哲学者・劇作家フリードリヒ・シラーらの美的教育論を理論的な背景としながら、現代的な教育諸課題に応答する研究をしています。

例えば、「効果的で美しいプレゼンを実現するために必要なことはなにか」「効果的なディスカッションにはどのようなデザインが大切になるのか」といった課題は、現代的な教育課題として重要ではあるものの、教育機関で勉強する機会はあまりありません。教員を含む専門職がこうした教育課題にストレスなく応答していく方法についても考えています。新しい時代に対応した価値の創造の実現を目指して、理論的・実践的に取り組んでいます。

研究室WEBサイト

■主に倫理学を学問的なよりどころとしながら、教育の現代的な課題への応答に広く取り組んでいます。

- ■「プレゼンスキルアップ講座」等を通じて、広くディスカッションやプレゼンのメソッドに焦点を合わせ、価値の創造につながる教育を目指しています。
- ■教員養成・研修に関わる研究・研修としては情報倫理・道徳教育・キャリア教育,教育一般が主となります。連携先としては、教育委員会、学校、自治体、教育機関、企業等、幅広く対応しています。

■中村美智太郎・鎌塚優子・竹内伸一・岡田加奈子編著『とことん考え話し合う道徳-ケースメソッド教育実践入門』学事出版,2018年

- ■武井敦史編著・中村美智太郎他『地場教育--此処から未来へ』静岡新聞社, 2021年
- ■中村美智太郎・鎌塚優子・竹内伸ー編著『ケースメソッド×探究』学事出版, 2022年。

■ その他の社会連携活動

- ・御前崎中学校区スクラムスクール運営協議会・委員(2016年~)
- ・静岡県教育委員会・道徳教育推進協議会・副会長(2017年~)
- ・静岡県立総合病院治験審査委員会・委員(2017年~)
- ・文部科学省中央教育審議会・専門委員(2021年~)

他

中村 美智太郎

学術院教育学領域 学校教育系列 准教授

- ・情報倫理教育 ・道徳教育
- ・キャリア教育 ・美的教育
- ・ディスカッション/プレゼンテーション

社会連携へ向けたアピールポイント

□ SDGs教育に関する研究プロジェクト 「教えて考えるSDGs教育プログラム」の開発 SDGsをコアとした産学官連携

キーワード:SDGs. 持続可能. 教材・授業開発. 企業が取り組むSDGs

SDGs (Sustainable Development Goals)は「持続可能な開発目標」 の略称であり、2030年までに国際社会が協働して達成すべき[17の目標] と[169の具体目標]が示されたものです。これらの目標は2015年に国連 のサミットで採択され、世界的な取組が加速していますが、日本国内では SDGsの認知の向上と具体的な行動はまだ十分なものとなっておらず、学 校教育を通した普及啓発に期待が寄せられています。

本研究プロジェクトでは、2018年度より静岡朝日テレビ、出光興産株 式会社、NPOしずおか共育ネットといった企業やNPOの方々と連携し、 SDGsの認知の向上と行動の促進を図るための児童生徒向け教材授業パッ ケージの開発実践及び提案を行っています。

2021年3月には朝日新聞主催「大学SDGs Action! Awards 2021」にお いて「日本のBOSAIを世界へ」の企画がグランプリとオーディエンス賞を 受賞しました。

研究室の 紹介動画

「目標設定」と「思考様式」というSDGsが有する二つ側面を軸として、学校向けには「教 えて考えるSDGs教育」の教材・授業を開発し、学校、学年、テーマに合わせた授業を 提案しています。また、ローカルな課題からグローバルな問題を展望するために、サク ラエビの不漁問題、フェアトレードやフードバンクの取組、防災を通じたSDGs教育、 企業が取り組むSDGsの紹介など地域社会に関わる教材や動画を開発・制作し、地元の 新聞やテレビなどでも紹介いただきました。2021年度はコロナ禍にあって,出光興産 株式会社と連携し,「親が働く会社を知り,SDGsと防災について学ぶ」をテーマとした 「オンラインこども参観」を実施しています。

出光興産 website

その他の社会連携活動

- ・文部科学省・中央教育審議会・専門委員(2011~2021)
- ・日本卓球協会・スポーツ医科学委員会・委員(2017~)
- ・SDGs Quest みらい甲子園 静岡県大会実行委員会・委員長(2021~)
- ・NPO静岡ラーニングラボ・理事長(2011~)

藤井 基書 学術院教育学領域 学校教育系列 准教授

- ・防災教育
- ・スポーツ・インテグリティ
- · 青少年支援

プロジェクト研究所の概要

社会連携へ向けたアピールポイント

□ スポーツ・インテグリティ教育の理論的・実践的研究

キーワード:スポーツ・インテグリティ、スポーツ倫理、アスリート、オリンピック・パラリンピック

静岡大学現代教育研究所 スポーツ・インテグリティ教育プロジェクト

スポーツ界では「スポーツ・インテグリティ」の確立が重要な課題と なっており、競技界及び競技者・指導者に高い倫理観と行動基準を定着 させ、不正行為が未然に抑止されるような取組の強化が図られています。 その一方で、スポーツ・インテグリティ教育の教材開発、教育手法、カ リキュラム構築は計画途上の段階にあると言われており、教育・学習理 論の知見に即した教育プログラムの開発・普及が急がれてきました。本 研究所では、スポーツ全般を対象として、競技者及び指導者に向けた自 律的・倫理的思考の強化・促進に資する教材及びプログラム開発を進め ています。その成果の一部として、競技団体やスポーツ協会の指導者を 対象とした「スポーツ・インテグリティ」に関する研修会やシンポジウム を開催してきました。今後も教材及び教育プログラムの開発・実践を重 ねながら、競技団体との連携を深めつつ、プログラムに対する評価検証 を重ね、より汎用性の高い教育実践の普及を図ります。

研修スケジュール

オンライン研修の様子

本研究所では、教育学、倫理学、心理学、スポーツ科学などさまざまな専門家が 協働して、学際的な知見に基づく新たなスポーツ・インテグリティ教育の教材開 発・プログラム提供を行ってきました。2020年度より、これまでの研究成果を生 かして、研修会やシンポジウムの開催や教材集及び書籍を出版し、指導者やスポー ツ関係者への啓発活動を進めています。競技者だけでなく、日本オリンピック委員 会や日本卓球協会など複数の競技団体の組織関係者とも意見交換を重ねることで, トータルかつインクルーシブな取組を目指しています。今後は地域のスポーツ団体 に加えて、海外の専門家とも連携を図り、ポスト東京2020における持続可能なス ポーツ文化の振興と発展に貢献していきたいと考えています。

に関する書籍

プロジェクト研究所 所長

藤井 基書 学術院教育学領域 学校教育系列 准教授

研究所メンバー(客員含)

- ・藤井基貴(教育)
- ・山本降太(学環)
- ・井柳美紀(人文)
- ·中村美智太郎(教育) ・塩田真吾(教育)
- · 村越真(教育)

- ・大木聖子(慶應大)
- ・加藤弘通(北海道大)
- ・吉田和人(順天堂大)
- ・園田正世(東大院)

- ・スポーツ・インテグリティ教育
- 防災・リスク教育
- ・SDGs教育

ロジェクト研究所の概要

社会連携へ向けたアピール

ポイン

□ ICTを活用した防災教育・防災訓練の開発と普及モデル

キーワード: 防災教育. SNS. リスク教育. 防災訓練

静岡大学現代教育研究所 防災・リスク教育プロジェクト

現在、AIやSNSを活用した対話型災害情報の提供(SOCDA)など、災 害時におけるICTの利用に関する実践や研究が進められています。こう した災害時におけるICT活用が進む一方で、災害時におけるSNS上での 誤情報・虚偽情報の流布が社会問題となっています。例えば,2016年 の熊本地震では、20歳の男性がTwitterに「地震のせいで動物園からラ イオン放たれた などと虚偽情報を投稿し、熊本市動植物園の業務を妨 げたとして逮捕されました。また、現在のコロナ禍においてもこうした 誤情報や虚偽情報のSNS上での流布が見られます。

これらを現状を踏まえると災害時を含め、リスク対応にあたっては、 AIやSNSなどのICTを上手に使いこなしつつ,情報の真偽を見極める力 が求められます。その一方で、従来の地域や学校における防災教育・防 災訓練ではICTの有効な活用方法について検討する教材がほとんど見ら れませんでした。本研究プロジェクトでは、ICTを活用した防災教育・ 防災訓練の開発と普及モデルを開発し、静岡県内の地域防災や学校防災 での普及を図っています。

情報の信頼性を確かめよう

教材の紹介 LINEみらい財団×塩田研究室

本研究所では、教育学部に所属する教育学、倫理学、心理学などを専 門とする教員が中心となり、学際的な視点から防災・リスク教育の開 発・提供をてがけてきました。2020年度から、これまでの研究を生か し、静岡大学防災総合センター、静岡県地震防災センター、浜松市防災 学習センターといった専門機関と連携しつつ、静岡県内の高校と連携し て、高校生を対象とした防災教育プログラム 「防災ユースアンバサダー プログラム」を実施しています。「防災ユースアンバサダー」プログラム では、ICTの活用をはじめ、地域防災を担う青少年の育成を目指してお り、専門的トレーニングを受けた大学生たちが高校生による防災講座の 実施を指導・支援しています。

プロジェクト研究所 所長

藤井 基書 学術院教育学領域 学校教育系列 准教授

研究所メンバー (客員含)

- ・藤井基貴(教育)
- ・山本降太(学環)
- ・井柳美紀(人文)
- ・塩田真吾(教育)

·中村美智太郎(教育)

· 村越真(教育)

- ・大木聖子(慶應大)
- ・加藤弘通(北海道大)
- ・吉田和人(順天堂大)
- ・園田正世(東大院)

- ・スポーツ・インテグリティ教育
- 防災・リスク教育
- ・SDGs教育

社会連携へ向けたアピールポイント

【代表的な研究テーマ】

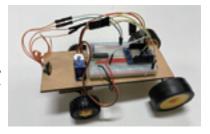
□ 技術科教育に関する研究

□ プログラミング教育に関する研究

キーワード:計測・制御、プログラミング、デジタルファブリケーション、アクアポニックス

1)技術教育に関する研究

学生と共に中学校の技術科で利用可能な教材開発や授業設計を行っています。特にコンピューターを利用した「ものづくり」を中学生が体験することで、Society5.0の実現に向けた知識や技能を習得できるような教材開発を目指しています。また、技術科で「ものづくり」を通した問題解決能力の育成を指導するために、プロジェクトマネジメントに基づく技術科の授業設計を行っています。


2) プログラミング教育に関する研究

小学校のプログラミング教育の必修化を受け、中学・高校と系統的に指導していくための方法を研究しています。GIGAスクール構想で学校にコンピューターが導入されたからこそ、インターネットを活用したプログラミングの指導や、計測・制御教材による現実空間に影響を与えるプログラミングが重要であると考え、教材開発を行っています。

ネットワークを利用する 計測・制御教材 センサーのデータを ネットワーク経由で 自動的に取得する システムを構築します。

ロボット教材を利用する プログラミングの指導提案 個別に行われているプログラミング教育に対して、センサーや アクチュエーターの指導順序を 提案しています。

ARによる試作 CADで制作したデータを ARで表示するプログラミ ング体験を通して、新し い技術を学びます。

ホームページ

- ・子供に未来を語ることができる技術科教員の養成を目的に、普通教育における技術教育として現在の社会およびSociety5.0の構築に必要な技術を考えながら研究を進めています。
- ・Society5.0を実現するためには、技術を利用できる人材育成だけでは不十分で、自ら技術を組み合わせて課題を解決できる人材育成が必要だと考えています。小・中学校段階では社会や生活上の問題から課題を発見することは難しいかもしれないですが、子供が持つアイデアを「もの」として具体化させる経験が、これからの社会を築く上で欠かせないと信じています。
- ・研究室の卒業生の多くは教職に従事しており、中学校や工業高校・総合高校等に訪問させていただく機会も多いため、現場の生の声を聴きながら教材開発や授業設計を進めています。自身でも附属中学校で授業を行い、開発した教材や指導方法の実践研究を行っています。

■ その他の社会連携活動

室伏 春樹 学術院教育学領域 技術教育系列 講師

- ・静岡大学教育学部附属静岡中学校 研究協議会助言者(2011年~)
- ・藤枝市ロボットアカデミー (ロボットコンテスト) 講師(2016年~)
- ・子どもゆめ基金助成活動「空き缶飛行機を作ろう!!]「手作り磁石をつくろう!!」 講師(2013年~)

- ・技術教育に関する授業や教材の提案
- ・学校環境におけるICTの利活用
- ・プログラミング教育の指導や内容の検討

【代表的な研究テーマ】

効果的な英語指導法・学習法の開発

言語習得研究

キーワード:英語教育、英語学習法、英語指導法、第二言語習得、英語学習者

「第二言語習得研究」の知見に基づいた「英語指導法の開発」を行っています(下図参照)。

英文法の習得

なぜ英文法を 学習することは 難しいのか?

> 第二言語 習得研究

英文法 指導法の開発

学習者が 効果的に学習 できる英文法 指導法とは?

英語教育

- ・英語を第二言語として学ぶ際に、 学習が難しい点は何か?それはなぜか?
- ・英語を効果的に英語を学ぶ(教える)方法の研究

1. 第二言語習得研究

"The window broke."という自動詞文を見ると「誤りである」と判断し、

"The window was broken"という受動態の文に修正したがる英語学習者が観られます。

どうしてこのような現象が観察されるのでしょうか?

このような第二言語を習得するメカニズムを明らかにするため、調査、分析を行っています。

2. 効果的な英語指導法の開発

第二言語習得研究で得られた知見を基に、英語学習者が正しく英語(文法・語彙)を理解できるための効果的な英 文法指導の内容と方法を開発しています。

大瀧綾乃(2020年) 動詞の3区分の知識とその指導法

白畑知彦・中川右也[編] 『英語のしくみと教え方 こころ・ことば・学びの理論をもとにして』 くろしお出版

白畑知彦・近藤隆子・小川睦美・ 須田孝司・横田秀樹・大瀧綾乃 (2020年)

日本語母語話者による英語非対格動詞 の過剰受動化現象に関する考察

白畑知彦・須田孝司[編]

『第二言語習得研究モノグラフシリーズ 第二言語習得研究の波及効果』 くろしお出版

・効果的な英語学習法・教授法の提案

- ・英会話・英語でのプレゼンテーション技能を高めるためのセミナー
- · 翻訳

情報学部公開講座2021

[これからの教育と情報:オンライン授業と学習のありかた] 『英語コミュニケーション能力を伸ばすオンライン授業』(大瀧綾乃)

その他の社会連携活動

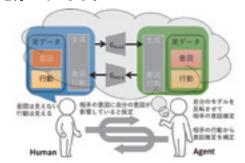
- ・『2030松崎プロジェクト』参加(静岡大学 未来社会デザイン機構)
- ・絵本翻訳:浜松市人権啓発絵本「ぼくは、ぼく」英語翻訳(2021年) 発行/浜松市健康福祉部 福祉総務課 人権啓発センター

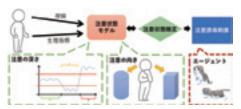
大瀧 綾乃 学術院情報学領域 情報社会学系列 講師

- ・英語学習法・教授法
- ・英語授業
- ・英会話・英語プレゼンテーション技能向上

□ 人間とシステムの建設的相互作用のためのインタラクションデザイン □ システムによる積極的介入に基づく人間の内部状態推定

キーワード:インタラクションデザイン、エージェント、内部状態推定、認知活動分析


使用者の「手が増える」システムは非常に多くのものが実用化されています。それに伴い、「独立して課題遂行 できる」システムや「人間の視野を広げる」システムが、新たに求められています。


このような状況下では、従来の、人間に従属する情報システムという関係では、システムの能力を十全に生か すことはできません。また、情報システムに頼り切りになるような関係では、今度は人間の能力を十分に発揮す ることはできません。

我々は、人間と情報システムの間で持続的なインタラクションをすることを前提に、人間の認知的能力を分析 して、お互いの能力を適切に発揮することができる関係を構築する研究を行っています。

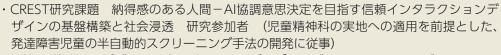
◆人間と情報システムが「お互いを尊重する」インタラクションをデザイ ンする

人間と情報システムの両者が求められる状況(例えば、低レベルの自 動運転)では、お互いに持っている能力を補い合わなくてはなりません。 このような状況において、お互いが行動の主導権と主体性を適切に調整 し、円滑に協調行動するインタラクションを、人間の認知行動分析から 検討しています。

◆「理解」と「誤解」を持続的に繰り返すことができる社会関係を構築する

創造的な活動においては、お互いの行動モデルを推定しながら、飛躍 や失敗を許容し、ある時点の枠組みの外に発展していく関係を作ること が求められます。我々は、システムが人間の内部状態を推定しながら行 動を調整しつつ、人間側にも適切な行動変容を促すインタラクションモ デルをインタラクション実験を通じて検討しています。

研究内容のポイント


- ・人間と情報システムの関係を一方的なものにしないことで、「協創」的な関係を構築すること目指しています。 これは、完璧なシステムを作成することが難しい状況において、柔軟な運用とシステムに対する親和性を高め ることに寄与します。
- ・観察のみによって静的な他者モデルを推定するのではなく、インタラクションを通して変化する動的な他者モ デルを構築することを目指しています。これにより、長期間にわたってインタラクションすることが求められ る環境下で、適応的にシステムが動作するための知見を蓄積しています。

応用例

社会連携へ向けたアピールポイント

- ・マルチタスク(例えば、自動運転レベル3の状況)における人間の注意状態推定と適切な誘導
- ・お手伝いロボットが[何もタスクがない]時の行動モデルデザイン
- ・システムとのインタラクションを通じた、発達障害児童の半自動的スクリーニング手法の開発

その他の社会連携活動

・地域DX推進シンポジウム 企画委員 および パネルディスカッションモデレーター

大本 義正 学術院情報学領域 情報科学系列 准教授

- ・持続的な関係を持つ、人間と情報システムの インタラクションデザイン
- ・インタラクション中の人間の状態分析と推定

研究の概要

芸連携へ向けたアピールポイント

【代表的な研究テーマ】

参加型文化とコミュニティの関係の研究

国際的マーケティングとローカルマーケティングの評価

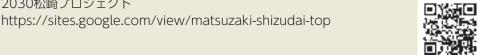
キーワード:コンシューマー文化、国際的マーケティング、オンラインコミュニティ、参加型文化

- ・私は異文化交流の際に生ずる誤解について研究しています。一般的に複数の文化が交流する場所はメディア、 マーケティング、ツーリズム、そして教育です。例えば、同じ「モノ」であっても他の文化では意味が変わるこ とがあります。しかし、その一方で「モノ」がローカル文化を超越して、普遍的な「モノ」になる場合もあります。
- ・こうした文化の交流を追及するのは異文化に対してだけではなく自分たちの文化を深く考える機会にもなりま す。
- ・その上、いかにコミュニティーに影響を及ぼすマーケティングとメディアを研究しています。特に参加型文化 に関してコミュニティを発達していることを研究しています。

・特筆すべき研究ポイント:

- ・同じキャラクターのイメージを日本とアメリカの 評価を比べました。
- ・コミュニティのアイデンティティに影響を及ぼしている ゆるキャラを研究しました。

- ・メディアなどに対するコンシューマーの認識を理解するの役立ちます。
- ・具体的に
 - ・プロジェクト、ツーリズム、商品、メディアなどの国際的なアピールのことを分析します。
 - ・消費者やファンの反応を分析します。
 - ・国際的な記号化の方法を分析します。
 - ・ジェンダーの見方を分析します。


その他の社会連携活動

・2030松崎プロジェクト

スーター・レイ 学術院情報学領域 情報社会学系列

■ 相談に応じられる関連分野

- ・国際的メディアの分野
- ・メディア分析の分野
- ・地域同士の仲間意識の分野

36

研究の概要

云連携へ向けたアピールポイント

□ 知的環境認識型ワイヤレスネットワークを用いた害獣接近予測 □ ワイヤレスパーソナルエリアネットワークを用いた場の情報共有

キーワード: 知的環境認識、ワイヤレスネットワーク、画像通信、機械学習、害獣対策

知的環境認識型ネットワークを害獣対策に適用した「サル接近検知システム」の概要を図1に示します。集落に敷設した観測点が、サルの発信機からの電波を受信すると、モバイル回線を経由して、観測地点、サル識別番号、電波強度(距離)等の情報をサーバに転送し蓄積します。約3年間にわたり、十数頭のサルに発信機を装着し20ヶ所以上の観測点でデータを収集し、さまざまな要因との因果関係を分析(図2)しました。

これまでの研究により、サルが出現する山間部という特殊 な環境下で、知的環境認識型システムを展開し、以下の研究 成果を得ました。

- ①山間部における電波強度測定時の受信機の キャリブレーション方法の確立
- ②多点電波強度観測に適した新たな位置推定手法
- ③山間部におけるサルの襲来経路の予測
- ④サル接近推定とインターネットによる情報配信方法
- ⑤山間部豊凶作状況・冬場平均気温と出現指数の関係分析
- ⑥機械学習によるサル出現パタンの解析と出現予報

図1 サル接近検知システム

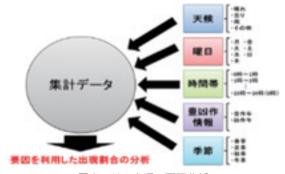


図2 サル出現の要因分析

WPAN関連のソフトウェア開発環境を完備

測定機材・開発キットが完備されており実動評価が可能

WPANを用いた音声・動画像のストリーミング転送を実現

知的環境認識型セルラ網を提唱する一人

高速周波数分割多重型マルチホップ転送の開発者

端末数500台規模のフィールド試験を実施した経験者

柔軟で自由度の高いシステムを開発

マルチメディア情報毎に適した無線転送方式を提案

各種ワイヤレスネットワーク方式の特徴を活用

参考論文等:

Prediction of the Appearance of Monkeys Based on Environmental Conditions 中井一文・江崎修央・杉浦彰彦 IEEJ Transactions on E && EE Vol.12,No.1,pp.132-139(2017)

■ その他の社会連携活動

小・中・高校への出前講義

市民講義開催、TV出演

杉浦 彰彦 学術院情報学領域 情報科学系列

教授

- ・ネットワーク関連
- ・ワイヤレス通信関連
- ・ディジタル放送関連
- ・音声・画像符号化関連

□ 地域情報資源(文化財・観光・福祉等)のデジタルアーカイブ化と活用

]コンテンツ制作(Webサイト、映像アーカイブ、デジタルマップ)

キーワード: Webデザイン、映像制作、地域資源、デジタルアーカイブ

1. 地域情報資源のデータベース化と活用

地域の文化や観光など情報資源を発掘し、情報学的な観点から分析・再構成して、データベース化を行います。 データベースを活用して、地域資源の新たな価値を発見し、効果的な情報発信に役立てたり、アイデアを発想す るために活用したりします。

- ・2021年度:ほそえで暮らそうマップ~ケアマネージャ支援のための社会資源マップ制作
- ・2020年度:いなさで暮らそうマップ~ケアマネージャ支援のための社会資源マップ制作

https://www.sugilab.net/inasa-map/

- ・2020年度:佐口行正絵葉書コレクション~デジタルアーカイブ化
- ・2017年度~2019年度:三ヶ日の観光に関する資源化・資産化・価値化
- ・2016年度: 浜松お祭りアーカイブ http://www.hama365.info/archive/

2. コンテンツ制作(Webサイト、ドキュメンタリー番組、映像アーカイブ)

学生が地域の組織に入って、取材・分析・構成して、さまざまなメディアのコンテンツを制作します。

・2021年度: 天竜浜名湖鉄道~天浜線フォント制作プロジェクトVer. 2

天浜線フォント 夏まつり2021

http://www.hama365.info/tenhamasenfont/festa.html

・2020年度:天竜浜名湖鉄道~天浜線フォント制作プロジェクト

http://www.hama365.info/tenhamasenfont/

- ・2019年度:三ヶ日町観光協会Webページリニューアル https://mikkabi-tourism.com/
- ・2018年度:三ヶ日町観光資源データベース https://www.sugilab.net/mikkabi/
- ・2016年度: 西浦の田楽PRサイト http://www.sugilab.net/nishiure_dengaku/

●コミュニケーションを大切にコンテンツ制作

コンテンツは現場に有り、コンテンツは人です。データベースやコンテンツを制作するときは、まずは人とのコミュニケーションを大切に、対話分析して、重要な点や持っている情報の構造を十分に検討していきます。当事者からでは見えてこないコンテンツの輪郭を浮き彫りにするお手伝いができればと思います。情報の発信先は、Webサイト、SNS、映像、データベース、アーカイブズ、デジタルマップなどメディアに関わるコンテンツであれば対応できます。

天浜線プロジェクト

三ヶ日ワークショップ

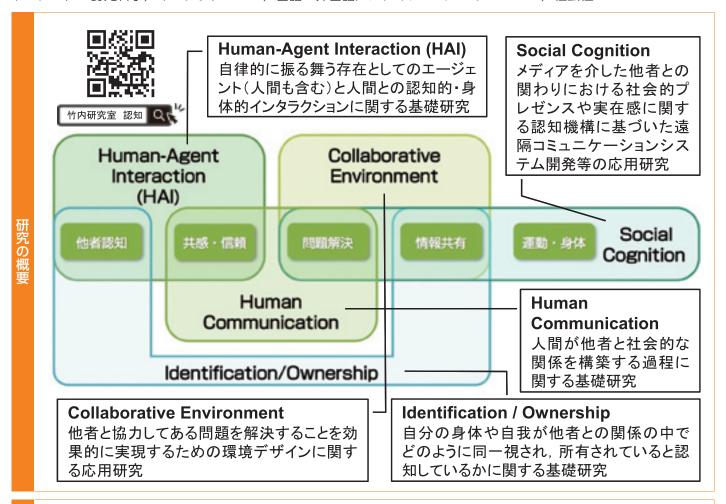
スタジオ撮影

高根城ドローン撮影

■ その他の社会連携活動

- 浜松文化振興財団評議員、浜松市博物館協議会委員
- ・人文科学データベース協議会委員、観光情報学会理事、とうかい観光情報学会幹事
- ・連携先:浜松市市民部文化財課、浜松楽器博物館、天竜浜名湖鉄道など

杉山 岳弘 学術院情報学領域 情報社会学系列


- ・地域活性化支援、観光化支援、メディア制作支援
- ・デジタルマップ制作、Webサイトの制作、映像制作、 デジタルアーカイブ構築

□ 認知科学に基づく自律的に振る舞う知的システムとの協調系デザイン□ モデルに基づいて他者の心を推定する知的システムの設計と開発

キーワード:認知科学,インタラクション,言語・非言語/メディアコミュニケーション,社会性

- ・円滑な対話実現のための対話者間の知識や概念の共通基盤の構築プロセスの認知科学的解析と音声対話システムへの実装に関する基礎研究(通信事業N社との共同研究:実施中)
- ・知的システムとしての自動車とドライバーとの認知環境の共有によるドライバーの安全指向行動マネジメントシステムの開発に関する研究(自動車メーカーT社との共同研究)
- ・ハドルルーム間の遠隔ビデオ会議における視線共有と円滑な話者交替と共感を伴う経験を実現するためのマルチモーダルメディア設計に関する研究(国立N研究所との共同研究)

など、人間 知能 認知 対話 共有 に関する専門的知識を土台にして、人工知能やロボット、知的システムとの共生と人間のwell-beingを目指した研究を通して社会に貢献します.

■ その他の社会連携活動

社会連携へ向けたアピールポイント

竹内 勇剛 学術院情報学領域 情報科学系列

- ・PCを利用した視覚障害者のコミュニケーションの支援(浜松市NPO団体との協働)
- ・ICTを活用した地域コミュニティの情報共有とコミュニケーションの活性化に関する調査 (静岡県情報政策関係部局からの委託)
- ・小学生向けクリエイティブな技能としてのプログラミング教室の開催(自主事業)

- ・人間と協働する人工知能やロボット,知的システムの導入・運用に関する諸問題
- ・メディアコミュニケーションやテレワーク, アバターなど物理的制約を超えた新しい働き方

【研究テーマ】

地域産業活性化人材教育

地域活性化に向けたアクションリサーチ

キーワード:経営情報、知識経営、起業家精神、組織文化、マーケティング、プラットフォーム構築

1. 地域産業活性化人材教育の在り方

【何が課題か?】

・地域産業の活性化、次世代経営者の育成、事業承継

【どうやって解決策を探索しているか】

- ・地域人材の育成に必要なビジネス教育の在り方に関する探索的研究
- ・地域ビジネス人材向けの教育活動の実践
- ・経営計画の実践に対する伴走によるアクションリサーチ

2. 地域産業活性化のためのプラットフォーム構築

【研究に対する想い】

・地域や日本を産業活性化で元気にしたい

【研究テーマ(例示)】

- ・静岡県の観光地における観光客向け情報提供プラットフォーム構築
- ・地域産業、学習者、大学・研究機関のエコシステムの在り方
- ・浜松地域の起業家精神の特徴調査
- ・シリコンバレー等のベンチャービジネス集積地からの学びなど

常に現実を直視し、現実社会に役立つことを念頭に、

- ・産業界・地域社会との接点の中で、実際の企業(国内外を問わない)等での事象 を題材とした研究を行っています
- ・研究成果を学界の発展に役立てるだけでなく、企業や組織のパフォーマンスの <u>向上のために、様々な形でフィードバック</u>しています
 - 1. 次世代経営人材の育成教育
 - 2. 経営相談対応

現実·実社会

成功・失敗経験 知見の共有

ジネス計画実行

市場・社会課題の

研究活動

市場・社会課題を 直接的・間接的に 解決する ビジネス創造

知見の獲得

地域と進出先の 交流促進・人口増

より質の高い問題 意識へ深化

教育・調査・ インターンシップ

理論化

産業界・地域社会との接点の中から地域・企業や学生と共同プロジェクトを実施しています

- 1. 静岡県の観光地における観光客向け情報提供プラットフォーム構築
- 2. 社会人と学生がとともに考える経営戦略・経営改善・新商品開発
- 3. 地域ビジネスプランコンテスト参加
- 4. 地域企業等の魅力を伝えるための動画制作
- 5. 高校生と大学生が一緒に考えるデータサイエンス入門

プロジェクトリーダー

永吉 実武 学術院情報学領域 行動情報学系列 教授

プロジェクトメンバー

- ・静岡大学 情報学部・情報学専攻 永吉研究室 学生
- ・静岡大学 情報学部 先端情報学実習プロジェクトメンバー (学生)

- ・経営戦略・事業戦略・事業計画立案・ マーケティング・経営管理
- ・ビジネスプロセスマネジメント、 情報システム構想策定
- ・ビジネスパーソン教育プログラムの構築・実施

□ 音情報処理に基づくデジタルアーカイブ化

| ユニバーサルなコミュニケーション支援に関する研究

キーワード: 音声情報処理、機械学習、行動信号処理、高齢者・障がい者支援

[1] ビッグデータにおける音の構造化と検索

会議や討論などの多人数会話を対象に、発話の話者分類や雑音・発話重畳に頑健な咽喉マイクを用いた音声 認識に関する研究を行っており、多人数会話の音声データのデジタルアーカイブ化や議事録の作成支援に取り 組んでいます。また、重要語に対する認識誤りのリスクを最 小化する音声認識技術を用いた音声検索システムの構築に取り組んでいます。

[2] 高齢者の生活を支援する日常生活行動モニタリング

スマートフォンで収集した音や加速度信号をもとに深層学習などの機械学習のアルゴリズムを用いた高精度な行動認識や、ガウス過程を用いて加速度信号の欠落を補間する手法について研究を行っています。また、高齢者のフレイル対策を目指して、嚥下・咀嚼音のデータベースを構築し、嚥下・咀嚼音の分析を行っています。

[3] 障がい者支援のためのユニバーサルコミュニケーションの実現

視覚障がい者支援としてコンピュータの文字を読み上げるスクリーンリーダを対象に、意味情報などを含む 漢字辞書の開発を行っています。また、聴覚障がい者支援としてスマートグラスを用いた日常生活音の可視化 やスポーツ観戦支援、手話の普及を目指して手話学習支援システムの開発について取り組んでいます。

- •特筆すべき研究ポイント: 音の構造化と検索では2,000講演以上, 行動モニタリングでは合計1,400時間のデータをこれまで扱っており, 実環境を想定した大規模データを処理し, 少ない情報量で高速かつ高精度な処理の実現を目指しています.
- •新規研究要素:高速で高精度な話者分類を目指してモデル間の類似度を行列の要素とした因子分解,音と加速度といった異なるセンサーデータを統合した行動信号処理といった新たなアプローチに取り組んでいます.
- ・従来技術との差別化要素・優位性:視覚障がい者が従来用いている詳細読みに基づく漢字変換方式では、音声で漢字を連想しづらい場合がありますが、漢字を意味情報で伝える方式は高速で高精度な処理を実現しました.
- •特許等出願状況:

社会連携へ向けたアピールポイント

「音声対話装置」特開2008-28190, 2008-286930, 「日本語入力装置」特開2006-302149, 「移動体端末, センサ値補間方法, センサ値補間プログラム, 行動認識装置および行動認識システム」特開2016-212066

■ その他の社会連携活動

A-SAP産学官金連携イノベーション推進事業にて音声対話型問診システムを開発

西田 昌史 学術院情報学領域 情報科学系列

准教授

- ·話者認識, 音声認識, 雑音環境下音声認識
- ・音声対話システム
- ・感情音声の認識
- ・非母語話者の音声認識,音声対話型CALLシステムの開発
- ・音声対話型車載機器操作システムの開発
- ・多人数会話におけるインタラクションの分析
- ・障がい者支援のためのWebアクセシビリティ

研究の概要

Έ携へ向けたアピール

□ 音情報に基づく口腔機能・摂食嚥下機能の自動認識・評価

〕音情報に基づく人の機能復元・拡張

キーワード:情報倫理,道徳教育,ディスカッション,プレゼンテーション

[音情報の応用研究]

音は、画像やセンサー類に比べて収集・分析が容易で、その上、情報に富んでいます。この研究室ではビッグデータの時代にあって未活用な音情報資源に着目し、音声認識技術による言語的な情報抽出に加え、音の分析と自動検出に基づいてヒトの心身状態を理解するための技術を研究しています。

研究室HP https://lab.inf.shizuoka.ac.jp/nisimura/

非侵襲で簡便なセンサーデバイスの開発や、適切な信号処理と 深層学習に基づく高度な識別手法の研究、さらにはスマホベース の簡便なアプリの提供からクラウドによる高度な情報分析システムの構築に至るまで、主に医療・介護分野での音情報の様々な応 用を想定して研究開発を進めています。また、障害者・高齢者が 失った機能を回復するための人間拡張の研究にも取り組んでいま す。

特筆すべき研究ポイント:

音を中心として、多様なセンサーの信号処理、特徴抽出、自動識別、分析に至る一連の処理と応用について、様々な企業や医療機関と共同研究を実施しており、以下のような成果が上がっています。

- 1. 摂食嚥下に関する行動の自動認識
- 2. 咳嗽(むせ)の遠隔モニタリングシステム
- 3. 嚥下・咀嚼機能の自動評価・分析システム
- 4. 作業行動の自動認識
- 5. 皮膚接触マイクを用いた耐騒音音声区間検出及び認識
- 6. 聴覚障害者のための環境音可視化&環境音体験学習システム
- ・このほか、音に限らず「センサー情報を活用したい」という要望に、信号処理&機械学習技術を使って広くお応えします。

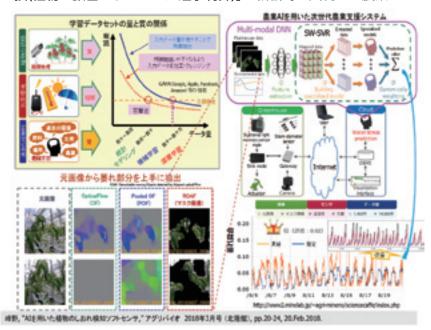
西村 雅史

学術院情報学領域 情報科学系列 教授

■ その他の社会連携活動

・国立研究開発法人産業技術総合研究所客員研究員(2017.4-)

- ・ニューラルネットワークなどの機械学習や 人工知能関連技術
- ・音声言語情報処理
- ・センサー情報処理
- ・音情報分析・特徴量抽出
- ・障害者・高齢者支援関連技術



- IoTとAIを用いた次世代協働栽培支援技術の研究
- □ 顔色をうかがった水やりによって、高糖度トマトを安定生産する農業AI

キーワード: 知的IoTシステム. マルチモーダル時系列データ(動画・静止画. 環境データ等)

当研究室は、人工知能を含めた情報科学の知見を農業分野に適用することで、**熟練農家の持つ暗黙知である「匠の技(植物の顔色をうかがった灌水制御)」**を機械的に実現する農業IoTとAlについて研究を行ってきました。

現在は、多岐に渡る栽培条件の中で、 高品質な作物を安定して計画的に栽培 するためにIoTや統計解析、機械学習 や最新の深層学習技術を駆使して、人 の感覚をさらに洗練させ農作業の負担 を軽減させる次世代協働栽培支援技術 の研究開発を進めています。特に生育 期間における動画や環境データといっ た表現力の異なるマルチモーダルな時 系列データの分析や機械学習を容易に 行えるような基盤技術の創成を目指し ています。

-詳細な研究内容に ついてはこちらを ご覧ください。

- ・草姿画像(動画)と各種環境データをAIに学習させることで、水やりの指標となる茎の太さの変化をAIに推定させ、枯れない程度の適切な灌水制御できる技術を2017年に世界で初めて研究開発しました。実際に、この「水ストレス栽培」を意図した灌水制御システムを開発し、地元企業のHappy Qualityやサンファーム中山と連携して実証実験を進め、AIによる灌水制御で高糖度トマト(平均糖度9.46、可販果率95%)を安定かつ大量の機械的生産に成功しました。
- ・その後2020年には、日本電信電話、NTTドコモと連携し、ドコモが提供する営農支援プラットフォーム「畑アシスト™」に、NTT研究所の研究開発したIoT向け軽量認証認可方式ならびに、本研究室が研究開発したクラウド型AI灌水を搭載することにより、高品質な野菜を安心・安全かつ効率的に栽培できるシステムの実証実験を行いました。本研究が進めば、新規就農者や高齢者でも、灌水以外の農作業に時間を割くことができ、高品質栽培に必要な農作業負担を大幅に軽減できることが期待されます。
- ・最近は、IoTやAIを活用したマルチモーダル時系列データ解析、実圃場といった複雑背景下の動画や静止画からの生育変化記録、自走ドンキーカー、Wi-Fi CSI (Channel State Information)を用いた状況認識技術などに加え、不均衡なマルチモーダルデータの研究を進めています。

■ その他の社会連携活動

峰野 博史 学術院情報学領域・ グリーン科学技術研究所 教授

○委員

- ・静岡県試験研究機関 外部評価委員、普及指導活動評価委員、など
- ○その他社会連携活動
 - ・第10回 IoT/M2Mフォーラムにて講演 (2021年12月7日)
 - ・革新的無線通信技術に関する横断型研究会(MIKA2021) -農林水産ICTスペシャルセッション- にて招待 講演 (2021年10月28日)
 - ・農業情報学会年次大会にて講演 (2021年5月23日)、など

- · IoT (Internet of Things) · Smart Agricultural System
- · CPS (Cyber Physical Systems) · Wireless Sensor Network
- · Multimodal Time-series Data Analysis
- \cdot Machine Learning, Deep Learning, Reinforcement Learning

研究の概要

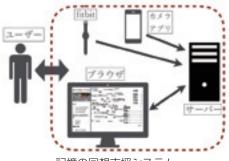
【代表的な研究テーマ】

自閉傾向を持つ方のコミュニケーションの方法を理解する研究

□ 個人写真を使った記憶の回想支援

キーワード: コミュニケーション、自閉傾向、記憶回想支援、人とコンピュータの相互作用

1. 自閉傾向を持つ方のコミュニケーション方法を理解する研究


自閉傾向の方は、一般にコミュニケーションが不得手といわれて います。ですが、私たちが開発しているコミュニケーションゲー ムのなかで、彼らは巧みに他者と意思疎通をおこないます。この ような知見をもとに、自閉傾向をもつ方を理解しつつ、コミュニ ケーションの支援に関する研究を進めています。

コミュニケーションゲーム

2. 個人写真を使った記憶の回想支援

個人が撮りためた写真を情報技術によって統合・処理すること で、感情をともなう記憶を呼び起こす研究をおこなっています。 精神的に落ち込んでいる方に対して、活動へのモチベーションを 向上させることを狙っています。

記憶の回想支援システム

・研究している分野

基本的には大学の実験室のなかで、多様な特性をもつ人間のコミュニケーションや考え方の特徴を調べつつ、 人々の幸せに貢献するツールの開発を目指しています。現場での活動経験が豊富というわけではないですが、 支援学校や介護場面を想定し、研究成果の現場への実装を目指しています。

・研究アプローチ

認知モデリングという「人間の模型をコンピュータで作るアプローチ」を用いています。個人の思考やコミュニ ケーションの傾向をコンピュータによって表現し、その表現をもちいた支援を行います。情報技術を活用した 人間に対する深い理解が、今後の社会での様々な問題の解決につながっていくと考えています。

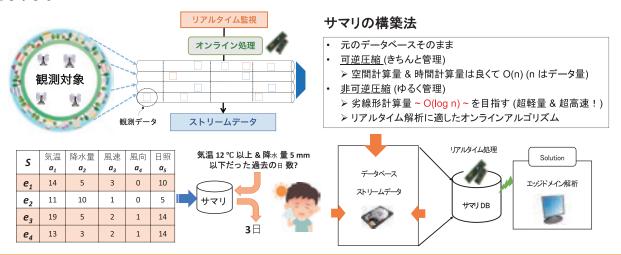
森田 純哉 学術院情報学領域 准教授

■ その他の社会連携活動

名古屋大学招聘教員:大学における研究・開発成果の社会実装を目指すプロジェクト(名古 屋大学センターオブイノベーション)に2014年より現在まで参画している。ケアハウスで の実証実験、一般成人22名を対象とした各人半月におよぶ記憶回想実験、一般高齢者を対 象とした1ヶ月におよる心身機能トレーニング実験など、現場における大規模な実証実験 を実施してきた。

■ 相談に応じられる関連分野

情報技術をもちいた人間の心理や認知の支援(自閉 傾向、記憶回想、認知機能の低下、人とコンピュー タの相互作用)



ストリームデータの要約

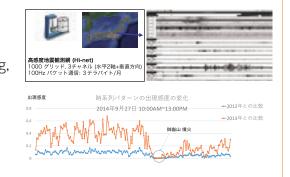
データ駆動の科学発見

キーワード:リアルタイム分析、異常検知、省メモリアルゴリズム、ストリームデータ基盤

- ・クラウドサービスの普及とIoTの発展に伴い、人や社会に関わる多様な事象のデータ利活用が広がっています. 観測系から常に生成され続けるストリーム型のデータでは、観測系の変化や異常をいち早く検出するリアルタ イム解析への応用が期待されています.
- ・本研究では、このようにストリーム型ビッグデータのインメモリ管理を実現するソリューションとしてデータ 要約 (summary) と呼ばれる情報圧縮技法を扱っています.
- ・サマリと呼ばれる<mark>超軽量データ構造</mark>を構築することで、任意の関係クエリに対し、高速に応答することが可能 となります.

- ・自然科学データ (地震観測網データ、天文測光データ) の突発現象をリアルタイム検知する共同研究を推進して います.
- ・極地や閉システムのリアルタイムデータ解析, 例えば予兆検出や異常検知に興味のある方はお声がけください.
- ・スマートファクトリーやバイオDXといった融合領域研究も進めています.

参考文献


社会連携へ向けたアピールポイント

光の 概要

P. Thanapol, Y. Yamamoto and S. Sako: Detection for transient patterns with unpredictable duration using Chebyshev Inequality and dynamic binning, Proc. of CANDAR WANC. 2021

Y. Yamamoto, Y. Tabei and K. Iwanuma:

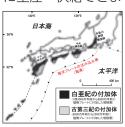
Parasol: PARASOL: a hybrid approximation approach for scalable frequent itemset mining in streaming data, Journal of Int. Inf. Systems, 2020

泰生 山本 学術院情報学領域 情報科学系列 准教授

その他の社会連携活動

- ・静岡大学-ヤマハ発動機共同研究講座スマートファクトリー領域担当
- ·理化学研究所AIP客員研究員
- ・講演「姿勢推定を用いた組立作業の工程分解」 (精密工学会第4回画像応用技術専門委員会, 2021)

- ・自然科学データのリアルタイム分析
- ・スマートファクトリー,バイオDX
- ・ストリームデータ基盤開発


温泉メタンと地下圏微生物を活用した分散型エネルギー生産システム

キーワード:温泉、微生物、新エネルギー利用、メタン生成、水素ガス生成、地域防災拠点

西南日本の太平洋側の地域は、海洋プレートが沈み込む際に海底堆積物が大陸プレートの側面へ付加し、その 後、隆起してできた"付加体"という地形からなります。付加体は、有機物を多く含む深さ約10キロメートルを超 える厚い堆積層です。これまでの研究において、我々は静岡県中西部、九州南東部、沖縄本島の付加体に構築さ れた温泉用掘削井(深度150~2,000メートル)から地下水(非火山性温泉)および付随ガスを採取しました。そし て、温泉水の化学分析、付随ガスの組成分析、微生物群集の嫌気培養、各種DNA解析を実施しました。その結果、 温泉付随ガスには高濃度のメタンが含まれていること、温泉には有機物を分解してHっとCOっを生成する水素発生 型発酵細菌とHっとCOっからメタンを生成する水素資化性メタン生成菌が含まれること、これらの発酵細菌とメタ ン生成菌が共生して、今現在も付加体の深部帯水層においてメタンが生成されていることを明らかにしました。

我々は、温泉施設にて大気放散されているメタンと温泉水に含まれる微生物群集を利活用した"分散型エネル ギー生産システム"の実用化を進めています。本エネルギー生産システムは、地下水・ガス・電気・熱を自家的 に生産・供給できます。よって、災害時の防災ステーションとしての役割を担うことも計画しています。

研究の概要

西南日本の太平洋側に 分布する付加体

海洋プレートの沈み込みと 付加体の地質構造

分散型エネルギー生産システム 、周辺家庭、学校、病院、役場、工場、空港など 18 - H₁ - CO₁ - CO

付加体の深部帯水層に由来するメタンと微生物群集を利用した分散型エネ ルギー生産システム。水・ガス・電気・熱といったライフラインを自家的に 生産・供給することが可能です。巨大地震や大規模洪水、ゲリラ豪雨といっ 付加体の深部帯水層に由来する温泉付随ガス(80~99%メタン) た災害発生時に、ライフラインを確保する役割も担うことができます。

特筆すべき研究ポイント:

西南日本の付加体の分布域は、中京や東海といった日本有数の工業地帯と重なっています。現在、再生可能工 ネルギーとして注目される風力や太陽光は天候に左右されるという大きな欠点があります。一方、堆積層の深部 帯水層に由来する地下水(温泉)および付随ガス(メタン)は季節変動することなく、安定して入手することが可能 です。また、付加体の深部帯水層に由来する微生物群集の活性は高く、培養開始後2~3日でメタンおよび水素 ガスを生成します。付加体は、台湾、インドネシア、トルコ、ギリシャ、ペルー、チリ、ニュージーランドといっ た国や地域でも観察することができます。将来的には、付加体の地下圏のメタンと微生物群集を用いた分散型エ ネルギー生産システムの技術を海外移転することも可能です。

特許:

、向けたアピールポイント

特願2020-052932、PCT/JP2019/007354、特願2018-037195、PCT/JP2012/075535、 特許第6453386号、PCT/JP2021/011455

その他の社会連携活動

浩之 木村 学術院理学領域 地球科学系列

教授

- · 静岡県環境審議会 委員
- ・静岡県環境審議会温泉部会 副会長
- ・静岡市水素エネルギー利活用促進協議会 委員
- ・牧之原市環境審議会 委員
- ・島田市環境審議会 副会長
- ・静岡市FCV普及拡大検討分科会 委員

- ・温泉メタンによる分散型エネルギー生産システム
- ・温泉の微生物群集を用いたメタン・水素ガス製造
- ・災害時のライフライン確保
- ・地域防災拠点の創成

研究の概要

社会連携へ向けたアピールポイント

【代表的な研究テーマ】

昆虫の様々な形態を生みだす分子発生機構の解明 立体構造を[折り畳んで]形成する発生原理の解明

キーワード: 昆虫、形態形成、分子発生学、クワガタムシ

昆虫の形態形成(体がどのように出来上がるのか)についての研究をしています。

特にオスとメスで姿が大きく異なる現象である「性的二型」や、幼虫時代の栄養状態によって成長後の姿が変化 する[表現型可塑性]と呼ばれる現象について注目しています。これらの現象はいずれも、ほとんど同じゲノム(遺 伝情報)を持つにもかかわらず、全く異なる姿へと成長するというものであり、どのような遺伝子がその制御に 関わっているかを明らかにしたいと考えています。

研究対象として、主にクワガタムシを用いています。クワガタムシはオスとメスで姿が大きく異なり、さらに 同じ種類のオスの間でも大顎の大きさには大きなバリエーションがあります。複数種のクワガタムシをもちいて、 これらの現象の分子発生機構の解明を目指すとともに、種間での大顎形態の違いをもたらす遺伝基盤などにも注 目しています。

他にも、カブトムシやツノゼミをもちいて、 複雑な立体形態が、脱皮前に「折り畳まれて」 形成される機構についての研究も行っています。

研究室で研究対象にしているクワガタムシ

研究の内容(形態形成に関する研究)は直接社会実装されるようなものではありません。しかし、使っている研 究材料がクワガタムシという一般的にも良く知られた生物であるので、一般向けのアウトリーチ活動において、 多くの方に興味を持っていただけるという利点があると感じています。具体的には、小学校や中学校における出 張講義やサイエンスカフェなどにおけるサイエンストークには頻繁に呼んでいただき、毎回好評をいただいて おります。また、博物館や昆虫館の企画展示などへの協力実績や(2017年豊橋自然史博物館 企画展「武器甲虫」、 2018年 丸瀬布昆虫館 フォーラムでの小学生向けトーク など)、TV番組やウェブコンテンツにおけるクイズの 監修などの経験もあります。

また、「甲虫の飼育」は広く親しまれている趣味の一つであり、100億規模の市場を有します。飼育用品の専門 会社や、甲虫に特化した専門的なペットショップも多く存在します。これらの業界との連携(商品開発など)にお いては、クワガタムシの学術的な知識の提供や実際の実験の請負なども可能です。

實貴 後藤 理学部 生物科学科 テニュアトラック助教

その他の社会連携活動

- ・小学校や高校における出前講義
- ・高校の生物部/課題研究へのアドバイスおよび実験支援
- ・博物館/昆虫館での企画展示の監修

- ・甲虫飼育に関する分野全般
- ・高校の部活動、課題研究活動支援
- ・科学・生物学のアウトリーチ活動

研究の概要

【代表的な研究テーマ】

微粒子・炭素ナノ材料合成

環境適応科学技術

プラズマ・放雷を用いた材料処理

理科教育支援

キーワード:炭素ナノ材料、ナノチューブ複合材料、プラズマ・放電処理、環境支援、理科教育実験

私は30年にわたりプラズマ・放電に関する実験研究を行ってきました。プラズマ発生法、プラズマモニター法、 プラズマ合成法などの経験が有ります。また、炭素ナノ材料の合成研究に携わって来ました。実験室にて、ナノ 粒子、ナノチューブ、ナノチューブ複合材料、金属内包炭素カプセルなどの炭素材料を合成することができます。 現在、これらの誘導体合成、社会応用の実験的研究を行なっています。導電性ナノチューブ入り繊維やナノチュー ブペーパー、ナノチューブセンサーの開発に成功しています。

実験室には種々のプラズマ発生装置、アーク合成装置、電気炉などが有ります。学内で、電子顕微鏡などの化 学分析装置を利用しています。近年、持続可能社会実現のため、環境適合材料、理科教育支援装置の実験も行っ ています。特に駿河湾サクラエビ問題と関連して、プランクトンのその場観察やセラミック漁礁の研究も行って います。

図1 水分散性ナノ ー チューブ・インク。

図2 導電性ナノ チューブ・ペーパー。

図3 環境にやさしい セラミック漁礁。

図4 駿河湾調査 (フィールドワーク)。

・社会連携:

- *サスティナビリティセンターの「サクラエビ問題|プロジェクトに参画しています。駿河湾の環境保全と産業活 性化に興味を持っています。
- *リバネス社の協力の下、技術実用化の研究を行っています。

特研究ポイント:

- *微粒子・新炭素材料を合成、分析する技術能力を持っています。
- *水分散ナノチューブ、ナノチューブ複合材、ナノチューブセンサーの研究を行っています。
- * 反応性プラズマの発生、モニター、プロセッシングの技術を持ちます。
- *J×Bアーク放電法、アークジェット法の技術を持ちます。学内の種々の分析装置を活用。

・新規研究要素:

独自のJ×Bアーク放電法による材料合成。環境適合材料、理科教育支援装置の研究。

・従来技術との差別化要素・優位性:

基礎研究を基に改良をして、応用化の道が開けると思います。

その他の社会連携活動

三重野 学術院理学領域

物理学系列 (サステナビリティセンター)

- フラーレン・ナノチューブ・グラフェン学会の幹事
- ・マイクログラビティ応用学会の編集委員

- ・真空技術
- ・ナノチューブ複合材料
- ・アーク放電
- ・プラズマ技術
- 試料分析
- 環境観察
- ・炭素ナノ材料
- ·理科実験装置

研究の概要

社会連携へ向けたアピールポイント

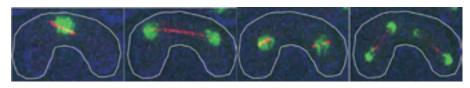
□ 休止細胞の生存機構の解明

□ 減数分裂における染色体の動態制御機構の解明

キーワード:染色体、蛍光分子、分子動態、栄養源

・染色体構造が人と似ている「分裂酵母」を用い、ガン治療、感染菌治療、不妊治療など、(1)医療に役立つ基礎的な知見の獲得や、(2)環境微生物の生存機構の解明などを目指しています。

【1】 休止細胞の生存機構の解明


休止細胞はさまざまな薬剤に耐性となります。感染菌やガン細胞の一部は休止状態であり、これら休止細胞の薬剤耐性が治療の妨げになっています。また環境微生物の6割以上が休止状態にあり、栄養源が少ない環境で生存しています。休止細胞の生存機構を理解することで、医療に役立つ新たな薬の開発や環境微生物の生存戦略の理解を目指しています。

【2】 減数分裂における染色体の動体制御機構の解明

精子や卵子の形成に必要な減数分裂は、高齢に伴って異常が増加し、胎児の遺伝子異常・流産や死産の原因となっています。相同染色体の構造変化が原因になっていると考えられており、この構造制御機構の解明を目指しています。

・2018年度: 三ヶ日町観光資源データベース https://www.sugilab.net/mikkabi/・2016年度: 西浦の田楽PRサイト http://www.sugilab.net/nishiure_dengaku/

【減数分裂における2回の核分裂】 緑: DNA 赤: 微小管

以下の内容についての解析の協力・相談などを行います。

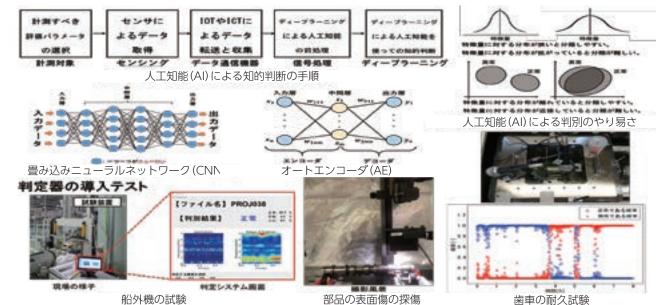
- (1) さまざまな蛍光分子を用いた培養細胞や微生物などの生体内の分子の可視化
- (2) 可視化分子の生きた細胞における細胞内局在や動きの解析
- (3) 可視化分子を利用したさまざまな化合物・薬剤の細胞に与える影響の解析
- (4) PCRなどを含む遺伝子・DNA解析技術

山本 歩 学術院理学領域 化学系列 教授

■ その他の社会連携活動

- ・日本細胞生物学会会員、日本分子生物学会会員、日本農芸化学会会員、アメリカ細胞生物学会会員 物学会会員
- ・特別研究員等審査会専門委員、卓越研究員候補者選考委員および国際事業委員会書面審査員・書面評価員(2019年7月-2021年6月)
- ・日本細胞生物学会代議員(2018年6月-2020年6月)

- ・生体分子の可視化
- ・生体分子の細胞内局在・動態の解析
- ・遺伝子工学・生化学技術



人工知能(AI)を用いた機械の異常検出

キーワード:異常検出、正常異常判定、人工知能(AI)、ディープラーニング

スマートファクトリやIndustrie4.0を見据えた将来のDX化された工場や物作りの現場では人手によって行わ れている部分が最大の問題となります。人間が行う作業は信頼性が十分ではありませんし客観的な計測データも 取得できないからです。そこで、工場の機械や製品に大量のセンサを配置してデータを取得することが必要とな りますが、そのままではビッグデータとなるので人間の解析では間に合いません。その為、人工知能(A I)の導 入が必須となります。そこで、我々は多数のセンサからのデータを使ってAIによる知的判断や正常異常判定を 行わせる研究を行っております。現状でも多くの例で97~100%の精度が得られていますので、人間からの置 き換えが十分可能です。

- ・機械の調子(正常・異常や故障の有無・種類等)を動作音等の計測データから判断させます。
- ・動作音を使う場合は、ハードウェアはマイクと音の取得装置だけですので、安価で取り付けも簡単ですし、複 数の機械の音を判断できますのでセンサの数を少なくできます。
- ・測定環境がネットワークに接続できない場所においても、遠隔地から自動で動作音を取得できるシステムも開 発済みです。
- ・ディープラーニングによる機械学習を採用しておりますので汎用性が高く、実験条件や対象の機械の種類が変 わっても再度機械学習させることで対応可能です。
- ・通常は正常な場合と異常な場合のデータを取得させて機械学習させますが、異常なデータが殆ど得られない場 合にも対応できるアルゴリズムも研究しています。
- ・したがって、今まで人間が行ってきた仕事や作業を機械(AI)に置き換えることが可能になります。

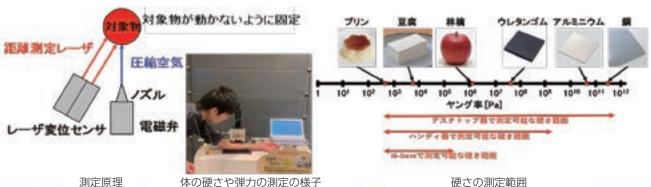
犬塚 博 学術院工学領域 電気電子工学系列

その他の社会連携活動

- ・浜松市民アカデミー講師
- ・夢ナビ・ラーニングフェスタ・まなびステーション講師
- ・各種講演・講義
- ・高校への出張授業

- ・ディープラーニングと人工知能、機械学習、特徴量抽出
- ・正常異常判定、異常個所や異常の種類の識別
- ・人間の技術や作業の機械への置き換え

究の概要

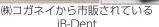

へ向けたアピールポイント

【代表的な研究テーマ】

圧縮空気を用いた非接触非破壊で硬さと粘度を測定する計測器

キーワード:硬さ、粘度、非接触、非破壊

硬さや粘性は日常的にも工場の現場においてもしばしば測定が必要になる量です。硬さの測定には専ら針式の 硬度計が用いられますが傷が付いてしまうのが難点でした。そこで、我々は眼圧測定器と同じ原理を利用して圧 縮空気の力で測定対象物を弾性変形の範囲で変形させて、その時の凹み量から硬さの情報を戻る時の遅れ時間か ら粘度の情報を得る計測器を開発しています。硬さ測定のスタンダードである針式硬度計や粘度測定の基準とし て用いられる回転式粘度計と比較して本計測器は0.9程度の相関が得られておりますので十分に置き換え可能で す。本計測器は既にメーカーからiB-Dentとして生産・販売して頂いていますので製品をすぐに入手して活用可 能です。


体の硬さや弾力の測定の様子

硬さの測定範囲

㈱井元製作所から市販されている デスクトップ機

- ・この圧縮空気を用いた硬さや粘度の測定法は非接触・非破壊という特長があって、食品の検査に採用しても衛 生的です。又、傷が付かないので検査しても商品価値を損ないません。熟度や食べ頃の判断にも使えますので、 食品ロスの削減にも繋がります。
- ・工業製品の検査に活用する場合も、傷が付きませんので抜き取り検査ではなく全数検査が可能になります。
- ・人間を測っても全く痛くなく害もありませんので、人間の皮膚や筋肉の硬さや弾力の測定が可能です。
- ・液体の粘度測定も測定器の洗浄なしで可能です。
- ・装置はメーカーから生産・市販されていますので安定した製品を購入してすぐに使用可能です。既にいくつか の会社や研究機関で採用頂いております。

その他の社会連携活動

犬塚 博 学術院工学領域 電気電子工学系列 教授

- ・浜松市民アカデミー講師
- ・夢ナビ・ラーニングフェスタ・まなびステーション講師
- ・各種講演・講義
- ・高校への出張授業

- ・硬度測定、粘度測定、食物の硬さ測定、プラスチッ クやゴムの硬さ測定、人体の硬さ測定
- ・計測データの信号処理、ディジタル信号処理
- ・ディジタル計測、CAM

音声メディア利活用のための音声言語情報処理技術

長時間の実環境センサーデータからの知識獲得と利用

キーワード:自動音声認識、音声検索、自動字幕、AI応用、長時間センサーデータ

音声言語情報処理の基礎および応用技術の開発

- ・深層学習(AI技術)による話し言葉の自動音声認識シ ステム、様々な言語・環境で利用可能にする適応学習 技術、検索語例示による長時間録音中の類似区間の検 索(音声文書検索)技術
- ・多人数の発言や環境雑音を含む録音データからの話者 分離や自動字幕出力、新しい用語検出と学習等の編集 支援技術 など

メディア・センサー情報を対象とした知能情報処理応用 技術の開発

- ・長時間データから様々な音の種類(音響イベント)や行 動の区間を同定する技術
- ・音声聴取時または想起時の脳波信号を利用した脳内活 動の特徴表出の学習と認識の技術 など

特筆すべき研究ポイント:

- ❖ 近年の深層学習 (AI技術) の進展に関わりが深い音声・言語処理技術 (音声認識・検索・自動字幕化など) の開 発実績
- ❖ 実環境の収録音声データ (電話収録音声、講演・講義音声、多人数会議音声、など) やセンサー信号 (運転行動 信号や脳波信号など)を対象とした研究開発事例
- ❖ 企業のための実環境運用向けのシステム実装を含むソフトウェア開発の実績(コールセンター向けの最適化)

最近のAI技術の進展によってコンピュータによる音声言語やセンサー信号の処理技術は高い能力をもつよう になってきました。音声や周囲のセンサー信号を活用することで、人間の知的活動に役立てたり社会活動をもっ と豊かにしたりする仕組みを作っていくことを支援できればと思っています。

• 関連書籍等:

音声言語処理と自然言語処理(増補)(共著), コロナ社, 2018.

甲斐 充彦 学術院工学領域 数理システム工学系列 准教授

その他の社会連携活動

・コールセンターの通話内容の自動書き起こしや分析のシステム構築(企業向け)

- ・企業内でのプライバシーを重視した講演や会議等の自動書き起こし、発言内容の検出や 語彙の発見と登録支援、自動字幕出力などのシステム開発やそれらの利用環境向けの最
- ・音声・言語やその他のセンサーデータを利用した知的活動、社会活動を支援する仕組み の構築

究の概要

へ向けたアピールポイント

□ 能動回転式ミスト回収装置

□ 低温エタノールを用いた高速凍結技術の開発

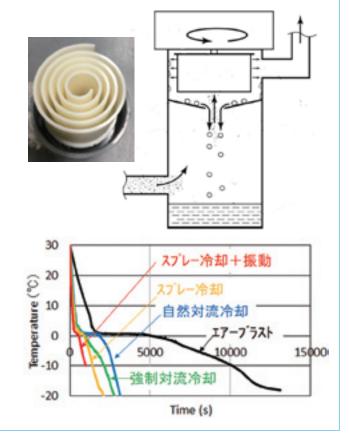
キーワード:ミスト回収、高速凍結、食品冷凍

能動回転式ミスト回収装置

特許出願中

ミストを含有したガス中で、らせん状の板を高速回転 させることで、ミストを回収する技術です。

らせん状の板を回転させることで、従来から使用されているサイクロン内部で発生する回転流れを作り、ミストに遠心力を発生させてらせん状の板でミストを回収することができます。


低温エタノールを用いた高速凍結技術の開発

血液や液体の食品などを低温エタノールで高速凍結させる技術です。

低温エタノールのスプレーや振動を利用して極めて高 速な凍結ができます。

右図は、模擬血液をさまざまな方法で凍結させたときの 温度変化です。

低温エタノールのスプレーと振動を印加することで、従来のエアーブラストの約20倍のスピードで高速な凍結ができます。

- ●伝熱や拡散および分離の効率を高める技術を研究しています。
- ●マウスなどの動物細胞を使用した試験を実施しています。
- ●浜松医科大学での人体解剖実習の経験があります。
- ●犬やマウスを使用した多くの動物実験の経験があります。(現在は実施していません。)
- ●近赤外光(NIR)計測や光電子増倍管を使用した微弱光計測の技術があります。
- ●簡単な電子計測・制御回路等の試作ができます。

木村 元彦 学術院工学領域 化学バイオエ学系列 教授

■ その他の社会連携活動

- · 化学工学会東海支部 役員
- · 日本人工臓器学会会員
- · 日本未病学会会員
- · 日本生体医用工学会会員

- ・伝熱装置、拡散分離装置の開発
- 医療機器の開発
- 計測・制御装置の開発

社会連携へ向けたアピールポイント

【代表的な研究テーマ】

□ ロボットのナビゲーション,ロボットマニピュレーションの応用 □ センサ情報処理、機械学習、運動学習、運動計画、動作生成

キーワード:移動ロボット、マニピュレータ、機械学習、運動計画、環境認識

【背景と目的】

移動ロボット,アーム型ロボット(マニピュレータ)などのロボットは,様々な作業を自動化させるための技術として期待されていますが,実用場面での利用はなかなか広がりません.その原因の一つは,工場などの「十分に整備ができる環境」とは異なる環境,例えば,農業現場,工場外の敷地内,人の活動する空間などでは,ロボットが環境を認識し,その環境に応じて動作を変更するようなソフトウェアによる対処が求められることにあります.このような,実世界でのロボット制御の際に生じうる問題に対処するための方法を,機械学習の方法等にもとづいて解決する方法を研究・開発しています.

・環境のばらつき(多様性)による環境センシングの誤り

・物理モデルと実世界の挙動のずれ

【適用対象】

- ・移動ロボットのナビゲーション(屋外不整地環境を含む)
- ・マニピュレータによる物体操作作業(力学的相互作用を含む)

【方法】

- ・動的計画法・RRT*などによる運動計画法
- ・機械学習を用いた環境認識
- ・環境認識の特徴選択・認識処理パラメータの自動調整
- ・機械学習を用いた運動制御

【共同研究実績】

- ・芝浦機械 (・スキューズ) (NEDO受託研究、生産支援ロボットの現場導入期間削減と多能化)
- ・住友重機械工業(触覚情報を利用した物体把持動作のための物体認識)
- ・ヤマハ発動機(屋外不整地環境ナビゲーション,波面ステレオ計測)
- ・トヨタ自動車パートナーロボット部(雑踏環境ナビゲーション)
- ・ソミックマネージメントホールディングス・静岡県農林技術研究所(農業環境図生成)
- ・ウチゲン(自律ロボット開発)
- ・ソフトワークス(画像による製品検査におけるパラメータ設定の深層学習検証,
 - A-SAP産学官金連携イノベーション推進事業),他

【連携方法】

- ・研究室メンバーの研究内容・実績、共同研究内容、開発期間に応じて検討
 - ■研究室学生による開発
 - ■共同開発,研究室での企業研究者との連携
 - ■企業研究開発への助言・コンサルティング(株式会社MIR)

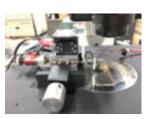
■ その他の社会連携活動

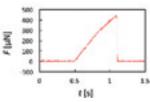
小林 祐一 学術院工学領域 機械工学系列 准教授

- ・2021年,経済産業省製造産業局ロボット政策室主催「中長期的なロボット研究に資する技術勉強会・意見交換会」講師
- ・企業向けセミナー(情報機構、トリケップス、日本テクノセンター、日刊工業新聞他)
- ・株式会社 MIR (Meta Intelligent Robotics, 静岡大学ベンチャー企業) 代表取締役

- ・移動ロボットののナビゲーション・動作計画
- ・アーム型ロボット・ハンド型ロボットによる物体操作(マニピュレーション)

分散性混相流の微細構造解明


物理的作用を援用した洗浄技術開発


キーワード: 気泡、液滴、粒子、洗浄、混相計測

私たちの生活に欠かすことができない水は、その温度によって固体である氷から液体の水へ、さらに気体である 水蒸気へと変化します。このように基本的に物質には固体、液体、気体という状態が存在しますが、それらの相 が混合した流れを混相流と呼びます。本研究室では、この混相流に関する研究を行なっています。例えば、液体 中を上昇する気泡は様々な自然現象に関連しているだけでなく多くの工業装置にて使用されていますが、その挙 動は複雑で、未だ解明されていない現象が多くあります。この現象解明により、さらに高効率な装置開発が可能 になります。また、私たちが日常的に使用しているシャワーは、気体中で無数の液滴を噴霧する混相流ですが、 これらの液滴を高速で表面に衝突させることにより、最先端の半導体デバイス等の表面を洗浄することができま す。このような混相流の流体力学的な現象解明である基礎研究と、様々な製造工程での洗浄、特に洗浄液を使用 しない技術開発、さらにはそれらを検出する計測技術に関する研究を行っています。


究の概要

(左)蒸気と水を混合して噴射している 様子。ドライエッチング後のポリマー (副生成物)や不要となったフォトレジ スト等の同時除去が可能です。

(中)自己感知型カンチレバーを使用し て、高付着力サンプルを剥離し、その 際に必要な力を評価する様子。洗浄手 法の違いによる洗浄力を評価可能で

(右)実際の洗浄工程を模擬し、回転す るウェハ上を通過するブラシの軌跡を 検出する装置。再汚染の危険性が評価 可能です。

・気泡流素過程の研究に適した複数個の気泡発生制御技術を保有。音波とスリット入り弾性管を使用して幅広い 気泡径で発生頻度を制御可能。

- ・数値解析による気泡や液滴を含む流れの再現。厳密に気液界面を取り扱い、気泡周りの境界層評価や、音速を 超えるような衝突速度での液滴の変形を解析。
- ・水蒸気中の高速液滴衝突現象を利用した洗浄技術を開発。企業との共同開発により製品化。
- ・洗浄工程で必須となる微細構造内へと液体侵入のために、加圧法や液滴列照射法、音波を利用した手法を開発。
- ・物理的作用を利用した洗浄手法の洗浄力比較のため、高付着力サンプルとその剥離力の測定装置を開発。定量 的に洗浄力を評価可能。
- ・超親水性高分子ブラシの洗浄状況把握のため、摺動力測定装置や真実接触面積の可視化装置の開発。定量的に 接触状況や接触面積を計測可能。またスポンジ付着力測定装置を開発し、材料間の相性を測定可能。
- ・光ファイバーを用いた混相計測技術を開発。気液界面の相検出や液膜厚さ、液体圧力の測定が可能。

真田 俊之 学術院工学領域 機械工学系列 教授

その他の社会連携活動

- ・応用物理学会界面ナノ電子化学研究会 委員長(H23-30)、コアメンバー(R1-)
- ・日本混相流学会 理事(H30-、H25-27)、論文審査委員(R2-)、総務委員(R3)
- ・日本機械学会 論文集アソシエイトエディター (H29-)、RA分科会幹事(H30-)
- ・日本ウォータージェット学会 理事(R1-)

- ・混相流体工学
- ・数値流体力学
- · 物理洗浄技術
- · 高速度撮影、画像処理

究の概要

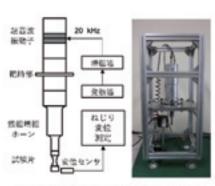
【代表的な研究テーマ】

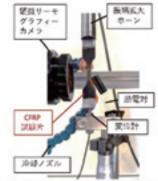
□ 超音波疲労試験技術による迅速疲労試験手法の開発

]高強度材料(鉄鋼. 繊維強化プラスチック)の超高サイクル疲労

キーワード:高強度鋼、炭素繊維強化プラスチック、疲労、破壊

島村研究室では、機械構造の基幹部品の長期耐久性に関する研究と、未来を支える新素材の強度と破壊の研究 を通して、機械構造の安全の確保と先端機械構造の開発への貢献を目指します。


【代表的な研究テーマ】


1)超音波疲労試験技術による迅速疲労試験手法の開発

機械構造の長期耐久性を担保するためには、繰返し荷重の作用による破壊(疲労)に関する実験的知見は不可欠です。本研究室では、回転機械などで問題となることのある、107回を超える繰返し荷重の作用による疲労現象(超高サイクル疲労)に着目し、超高サイクル疲労試験を実際的な時間で実施を可能とする加速試験方法の開発を実施しています。

2)高強度材料(鉄鋼, 繊維強化プラスチック)の超高サイクル疲労

超音波疲労試験機を用いた高強度鋼,炭素繊維強化プラスチックの超高サイクル疲労特性の評価を行なっています.

超音波ねじり疲労試験機の構成と試験機

CFRP積層板の超音波疲労試験の様子

島村研究室では、金属疲労、繊維強化プラスチックの疲労を中心に研究を行なっています、超高サイクル疲労に関する分野では企業との共同研究も積極的に行なっていますが、それに加えて、金属疲労や繊維強化プラスチックの疲労全般に関わる講習会や技術相談などもよく行なっています.

ついては、疲労に関係した不具合に関するご相談、疲労の現象論や疲労設計に関する講義やコンサルタントなどにも積極的に応じておりますので、お困りの企業様は気軽にご相談下さい.

• 関連書籍等:

日本溶接協会規格 WES 1112 (金属材料の超音波疲労試験方法) (原案作成委員会委員)

島村 佳伸 学術院工学領域 機械工学系列 教授

■ その他の社会連携活動

- ・浜松地域CFRP事業化研究会 副会長
- ・強化プラスチック協会 学識会員

- ・鋼、繊維強化プラスチックの疲労全般に関する技術相談、共同研究
- ・錮、繊維強化プラスチックの破壊全般に関する技術相談
- ・材料力学、弾性力学、複合材料工学、破壊力学、金属疲労などの講習

□ 水素・エネルギーキャリア、21世紀のクリーン燃料であるジメチルエーテル (DME)に関連した触媒、それを利用したシステム・装置の開発

キーワード:ジメチルエーテル(DME)、水素、触媒、エネルギーキャリア、クリーン燃料

DMEと水素を媒体とした脱炭素社会 (図 1 参照) が検討されています。我々は、触媒の観点から、この実現の一翼を担いたいと日夜、研究に励んでいます。

DMEからの水素製造法やDMEの経済的な製造法であるDME直接合成法は、2段階以上の反応からなり、一般には反応過程に基づき2種類以上の触媒を混合して行われます。我々は、混合触媒を用いることなく、それぞれの反応ステップに適した活性点を触媒表面上に近接させ、高分散させた高活性な触媒を開発しました。さらに、それを単一で用いる水素製造法およびDME製造法を開発しました。この触媒を用いれば、温和な反応条件下でも、高活性・高選択的に水素、DMEがそれぞれ得られるので、経済的な製造プロセスが可能となります。また、この触媒は、成型体に固定できるなどの特長もあり、大型だけでなく小型の水素製造器、DME製造器にも応用できます。さらに、DMEに関連した反応を利用して、排熱(廃熱)の回収や自然エネルギー(太陽エネルギー、風力エネルギーなど)を貯蔵・液化することも可能です。

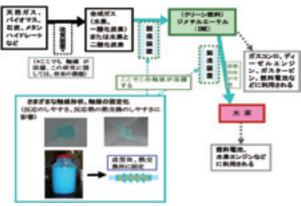


図1 脱炭素社会に向けての水素, DME, CO2チェーンの概念図

図2 水素, DMEなどに関連した研究

特筆すべき研究ポイント:

- ・一般的なDME関連の混合触媒よりも、低い反応温度、温和な条件下で、高活性です(省エネが可能な反応条件下で高活性)。
- ・成型体への固定化が可能な触媒です。

· 新規研究要素:

社会連携へ向けたアピールポイント

- ・混合触媒ではなく、単一(単身)でDME関連の反応に用いる触媒としては世界初の触媒です。
- ・従来技術との差別化要素・優位性:
 - ・DME関連の反応は多段階反応であるため、一般にはその反応機構に基づいて混合触媒が用いられます。しかし、我々の触媒は、単一で用いる触媒であり、各反応の活性点が、混合触媒よりも近接しているために、 反応が逐次的に進行しやすいです。そのため、低温高活性です。
- •特許等出願状況:

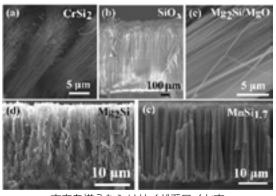
水素製造関連:国内6件、海外2件 DME製造関連:国内5件

武石 薫 学術院工学領域 化学バイオ工学系列 准教授

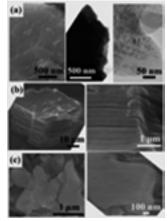
■ その他の社会連携活動

- ・学会の委員
- ・企業との共同研究

- ・ジメチルエーテル (DME)
- ・水素
- ・触媒


究の概要

【代表的な研究テーマ】


□ エネルギーデバイスへの応用を目指したシリコン・シリサイド系ナノ ワイヤ及びナノシート束の作製

キーワード:シリサイド系半導体、ナノ構造制御、量子効果、再生エネルギー

低次元物質ではバルクにない新しい機能の発現がみられるところから高機能, 高性能化したデバイスの実現が期待されています.ナノ構造の応用例のひとつと して熱電発電素子,Liイオン電池や太陽電池など,バルクなみの大きな結晶,大 面積を要するデバイスへの応用が重要な鍵を握っています.本研究では,バルク サイズの大きさを有するナノワイヤ束,ナノシート束を作製するとともに,新規 層状物質の創生を試みます.

方向を揃えたシリサイド系ワイヤ束

ナノシート束

ナノシート間を装飾する事による新しい機能性を有する層状物質の開発

- ・特筆すべき研究ポイント:シリコン系化合物,シリサイド系半導体は抱負な機能性を有し,シリコンテクノロジーと融合した新たな機能を有するデバイスの開発や,熱電発電素子やリチウムイオン電池などの再生可能エネルギー/発電・蓄電デバイスへの応用が期待されています。またこれらは資源抱負で安全・安心な元素からなる材料が多く,自然環境を考慮した代替材料としても注目されています。これらの材料を熱処理,溶液処理などの簡便な方法により作製します。
- ・これまで研究室ではシリサイド系半導体研究において世界に類似のない独自の成長,作製方法を先駆けて開発してきました。本研究では容易にデバイスへの応用が出来るよう,ナノワイヤ,ナノシートが束となったバルクサイズの材料を開発します。さらに新しい機能を発現する新規ナノ構造を探索,開発します。
- ・**関連書籍等:**シリサイド系半導体の科学と技術一 資源・環境時代のあたらしい半導体と関連物質,前田佳均編著,裳華房, 2014

8

立岡 浩一 学術院工学領域 電子物質科学系列 教授

■ その他の社会連携活動

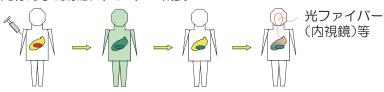
・学会, 地域, 学生サークル(キッズサイエンスカフェ)等との連携による理科工作教室の 実施

- ・シリサイド系半導体関連技術
- ・透過型電子顕微鏡法によるナノサイズの構造評価

□ 低侵襲ながん選択的光線治療薬の開発(電子移動PDTの開発)

□活性酸素の検出・評価法の開発

キーワード:光線力学的療法、光殺菌、がん治療、活性酸素


・低侵襲ながん選択的光線治療薬の開発

がんの光線力学的療法(PDT)は、低侵襲であり、早期がんに対して障害を残さずに完治できる特徴があります。 我が国では、胃がん、食道がん、肺がん、子宮頸部がん、悪性脳腫瘍等で保険適用とされ、優れた効果が報告されています。簡便かつ低コストなことも重要な特徴です。PDTは、暗所で人体無害な薬剤(光増感剤)を投与し、内視鏡等による光照射で施術されます。従来、がんの攻撃には酸素が必須でしたが、がん細胞内は低酸素であることが治療効果向上のため、課題と考えられています。そこで、酸素に直接依存しない電子移動型光増感剤を開発しました。さらにがん細胞選択的に作用する光増感剤を発表しました。また、PDTは、光殺菌や感染症治療等、幅広い応用が研究され、臨床でも実績が報告されています。本研究の光増感剤も幅広い応用が期待できます。

活性酸素の検出・評価法の開発

活性酸素は、発がんを含む疾病の原因をつくり、食品を傷め、材料の劣化を引き起こします。そこで、活性酸素を低コストかつ簡便に検出(定量)する技術を開発しました。

光線力学的療法 (PDT) の概要

光増感剤投与 時間 腫瘍へ 光照射 → がん細胞の壊死 の経過 薬剤が集中 アポトーシス

開発した電子移動型光増感剤の例

特筆すべき研究ポイント

・特許第6469096号(リンポルフィリン化合物及びその製造方法、並びに生体分子損傷剤) 低酸素でも活性を示す電子移動型光増感剤を開発しました。がん細胞選択性や動物実験レベルにおける抗腫瘍効果を確認しています。その後、改良型の光増感剤を特許出願(2020年)しています。

特許第4247393号(活性酸素の定量法)

安全かつ安価な葉酸(ビタミンBの一種)を用い、蛍光測定により、微量活性酸素を定量する方法を開発しました。

関連書籍等

へ向けたアピールポイント

学術論文の他、書籍でも公表しています。下記はオープンアクセス(ダウンロード自由)です。

- ・Electron Transfer-supported Photodynamic Therapy, in: Photodynamic Therapy-from Basic Science to Clinical Research, Chapter 1, IntechOpen, 2020年. (電子移動を利用する新しいPDTについて)
- ・Biomolecules Oxidation by Hydrogen Peroxide and Singlet Oxygen, in: Reactive Oxygen Species in Living Cells, Chapter 9, IntechOpen, 2018年. (簡便かつ低コストな活性酸素の定量法を含む内容)

■ その他の社会連携活動

平川 和貴 学術院工学領域 化学バイオ工学系列 教授

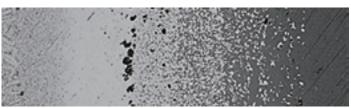
- ・日本光医学・光生物学会理事
- · 日本光線力学学会幹事

- ・活性酸素の検出および除去
- ・触媒、光触媒、光殺菌
- ・紫外線、光毒性、放射線の防護(安全教育)

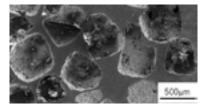
究の概要

【代表的な研究テーマ】

- □ 金属材料の腐食・応力腐食割れ・疲労に関する研究
- □ 高性能インプラント材の作製とその機械的評価に関する研究


キーワード:破壊、腐食、応力腐食割れ、金属、複合材料

藤井研究室のプロフィール:


- ・金属、セラミック、複合材料等の先進機械・構造材料の変形・損傷・破壊挙動に関する研究
- ・社会基盤(機械・構造物)の安全・安心を確保するための寿命評価に関する研究

【代表的な研究テーマ】

- A) オーステナイト系ステンレス鋼の応力腐食割れ挙動の評価: 高耐食性金属(ステンレス鋼等)でも、引張荷重を受けた状態で腐食環境にさらされると、局部腐食によりき裂が発生・進展します(応力腐食割れ: SCC). 本研究室では、①SCCき裂発生条件の解明 ②SCCき裂進展特性の評価 ③寿命予測法の開発を目的に研究を行っています。
- B) 高性能なインプラント材の開発: 損傷した骨の機能復元のためのインプラント治療が実施されています. インプラント治療では人工骨等を体内に埋め込むため, 生体および力学的適合材の開発が課題となっています. 本研究室では, 以下のインプラント材の候補を開発しています.
 - ①靭性と耐摩耗性を両立するセラミック-チタン複合材料と傾斜機能材料
 - ②応力遮蔽による天然骨損傷を防ぐ低ヤング率を実現するポーラス金属

①開発した傾斜機能材料(左側:チタン,右側:ジルコニア)

②自由に気孔率を制御できるポーラスチタン

特筆すべき研究ポイント:

- ・鋼やステンレス,アルミニウム合金等のいわゆる"普通の構造材料"の破壊現象を研究しており,企業との共同研究や技術相談を良く行っています.
- ・粉末冶金法による先進材料の開発を行っており、特にセラミックと金属を混ぜ合わせた複合材料・傾斜機能材料の作製に取り組んでいます。現在は、インプラント材を対象にしていますが、様々な用途に特化した材料の開発が可能ですので、ニーズがあればご相談ください。

藤井 朋之 学術院工学領域 機械工学系列 准教授

■ その他の社会連携活動

- · 日本材料学会 代議員
- ・日本材料学会破壊力学部門委員会 庶務・幹事
- ·材料力学, 材料強度, 機械材料等各種出張講義
- ・ポリテクカレッジ浜松 材料力学 非常勤講師

- ・鋼,複合材料等のSCC,水素脆化などの破壊全般に関する技術相談,共同研究
- ・材料力学、機械材料、破壊力学、疲労などの講習

研究の概要

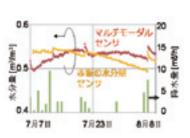
□ 土砂災害発生危険度把握のための土中水分量センサ開発

□ 多地点・多深度計測による大面積水分分布の観測

キーワード:土砂災害危険度把握、土中水分量、養分濃度、地温

近年、集中豪雨などにより土砂崩れ(斜面崩壊)が多く発生しており、家屋や道路、鉄道線路に接する斜面や盛土の安定性や危険度の把握がとても重要になってきています。雨などによる土中水分量の増加が、土の摩擦力を低下させると共に土の重量を増加させ、斜面の危険度が増すことにつながります。そこで、開発した土中水分量センサを含むマルチモーダルセンサを使い、斜面崩壊の予知、地盤の安定性評価へと役立てる研究を行っています。

開発したセンサは、小型かつ高性能であり、様々な土壌の計測が可能です。特に、世界初の技術として数ミリから数メートルの任意の範囲の計測を可能としており、土中水分の面分布を隙間なく観察できる画期的な技術を有しています。



小型センサで多深度計測を実現 (雨水の浸透の様子を計測)

センサ埋設部

無線信号送信で 遠隔監視が可能

大型の市販センサと遜色 ない特性が得られた

特筆すべき研究ポイント:

- ・土中水分量、養分濃度、温度を一度に計測できる、マルチモーダルセンサを開発
- ・数ミリから数メートルまでの様々な空間の水分量を計測できる
- ・無線によるデータ収集が可能で環境制御へと活用することができる

関連書籍等:

社会連携へ向けたアピールポイント

・防災・農業のための土壌・培地センシング, 暮らしと人を見守る水センシング技術, シーエムシー出版, ISBN 978-4-7813-1428-0, 2019年6月, (二川雅登)

二川 雅登 学術院工学領域 電気電子工学系列 准教授

■ その他の社会連携活動

- ・静岡大学防災総合センター 兼務
- 長野県塩尻市の消防防災課と連携
- ・浜松市春野町での現地計測を実施中
- ・精密農業用センサ開発

- · 土壌水分計測技術
- ・化学・物理センサ計測技術
- ・集積回路技術

社会連携へ向けたアピールポイント

究の概要

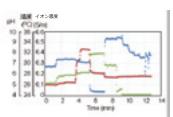
【代表的な研究テーマ】

培地内の化学情報(水分量、養分濃度、pH、地温)の直接・リアルタイム計測用センサ

土壌内の多地点水分量・イオン濃度分布観察

キーワード:土砂災害危険度把握、土中水分量、養分濃度、地温

栽培環境のモニタリングは、農作物の高収量・高付加価値化のためには無くてはならない技術であり、より一 層重要性が増してきています。土壌・培地は不均一な状態であり、空気中の環境制御に比べ、センサによる直接 モニタリングが必要となってきます。


これまでの研究成果から、土中水分量、養分濃度、pH、温度を一度に計測できる、世界初の培地内挿入型の 小型センサ(マルチモーダルセンサ)を開発してきました。このセンサは数ミリから数メートルまでの様々な空間 の水分量を計測できる画期的なものであり、市販のセンサには無い特徴を多数有しています。計測で得られたデー タを無線で収集ことも可能であり、リモートセンシングによる環境制御ができます。

小型センサで少量培地にも挿入可能 (水分変動計測の様子)

無線信号送信で栽培現場 での多点計測が可能

3種同時リアルタイム 計測の例

特筆すべき研究ポイント:

- ・土中水分量、養分濃度、pH、温度を一度に計測できる、マルチモーダルセンサを開発
- ・土壌・培地内を直接計測でき、根の近傍の情報を得ることができる
- ・数ミリから数メートルまでの様々な空間の水分量を計測できる
- ・無線によるデータ収集が可能で環境制御へと活用することができる

関連書籍等:

・防災・農業のための土壌・培地センシング、暮らしと人を見守る水センシング技術、 シーエムシー出版、 ISBN 978-4-7813-1428-0, 2019年6月, (二川雅登)

雅登 二川 学術院工学領域 電気電子工学系列 准教授

その他の社会連携活動

- ・静岡大学防災総合センター 兼務
- 長野県塩尻市の消防防災課と連携
- ・浜松市春野町での現地計測を実施中
- ・精密農業用センサ開発

- · 土壌水分計測技術
- ・化学・物理センサ計測技術
- · 集積回路技術

自己駆動体の集団現象・群衆避難ダイナミクス

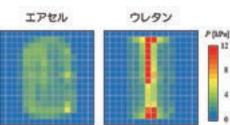
クッション使用時の体圧分布の制御

キーワード:集団現象、群衆避難、クッション開発、熱流体

【自己駆動体の集団現象】

人や車の集団現象の研究では各個体が剛体として扱われることがほとんどです。もし個体が変形性を持つとど うなるでしょうか。そのような興味から始めた、変形性を持つ「鎖状移動体」のコンピューターシミュレーション により、自発的で不可逆な凝集、完全渋滞への凍結転移、対向流による流動促進など、個体の変形性により特異 な集団現象が発生することを示してきました。

また、緊急事態に大勢の人が一斉に避難する行動も、自己駆動体の集団現象の例です。こうした群衆避難では、 なるべく短時間に全員が避難することが必要です。避難の効率には、出口や廊下のサイズや位置、避難者の行動、 障害物の存在などが大きく影響します。これらの影響を調べ迅速な避難を実現する方法を探るため、コンピュー ターシミュレーションを実施しています。


【エアセルクッションの開発】

樹脂製フィルムに空気を封入したエアセルは、軽さや薄さに加え体圧分散効果や除圧効果を有するため、高齢 化社会で特に重要となる褥瘡防止などの効果を持つクッション材と期待されています。研究室では、セルのサイ ズや形状、空気圧、人体曲率などが体圧分布に及ぼす影響の解明と、所望の体圧分布を実現するクッション設計 法の確立を目指した、実験と数値計算を行っています。

【相転移流体の熱対流など、その他】

流体に温度勾配を与えると発生する熱対流は古くから研究されてきました。熱対流挙動は流体の粘度などの物 性により大きく変わります。もし対流中の温度変化により流体が相転移を起こし、物性が大きく変化したらどう なるでしょうか。本研究室では、感温性高分子を用いてこのような流体を作製し、流体相転移が熱対流に及ぼす 影響を実験により調べています。

左から群衆避難シミュレーション、2種のクッションの体圧分布の比較、相転移流体の熱対流実験の例。

- ・緊急時の避難を迅速化・円滑化する手法の確立を目指した、群衆避難ダイナミクスの研究を進めたいと思って います。
- ・これまでに、エアセルクッションの開発の他、高温空気注入による土壌除染など、主に流体に関連した技術開 発についての共同研究の経験があります。

■ その他の社会連携活動

益子 岳史 学術院工学領域 機械工学系列 准教授

- ・日本物理学会、日本流体力学会、日本早期認知症学会ほか
- ・学会誌編集委員、広報委員など
- ・高校生の理科教育(SSH講演、FSS指導)、小学生の理科教室講師など

- ・人や車などの集団現象
- ・熱流体現象とその応用

不斉ラジカル反応

酵素反応·scCO₂

ガス用着臭剤

1999~2007(静大·助手·高部研)

グリーンものづくり ~ from mg to ton 10億倍のChem is try!!

The MASE Labor

静岡大学 間瀬研究室

2019~(敦授) グリーン研主担当

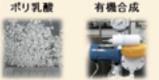
キーワード:ファインバブル、マイクロ波、フロー合成、機械学習、プロセス化学

1mgの薬で一人の命を救うことができるならば、1トン作る技術があれば10億人を助けることができます。 そして、世界中の人々の手元に開発した物質を届けるには、「必要な時に、必要な量を供給できるシステム」の 構築が必要です。従来法の廃棄物が多い合成法ではなく、グリーンサステイナブルケミストリーに基づいたも のづくりを実践するとともに、持続可能な開発目標であるSDGsに基づいた「つくる責任」も同時に果たさなけ ればなりません。我々は、後処理工程を極限まで削減することが、理想的な有機合成生産プロセス、すなわち E-Factor・エネルギー・コストを最小化して、安全性・再現性・生産性・選択性を最大化にする「グリーンもの づくり」に近づくと考え、「ファインバブルを用いた新奇反応場における有機合成」、「マイクロ波フロー反応を用 いた当量反応の開発1、「実験計画法と機械学習による反応条件最適化1を中心に挑戦しています。

これまでの研究、そして、これからの研究

高級香料ムスコン

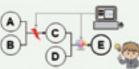
キラル相間移動触媒


1971年生まれ、1993~1999(名工大・融研) 2003(スクリブス研究所·Barbas研) スルホキシド・スルホン 有概分子触媒

2014~(教授)

有機反応検出用 蛍光センサー

2007~2014(准教授) 金属フリー ファインパブル マイクロ



ウェーブ

デスクトップブラント 反応最適化 (フローケミストリー) (DoE & AI)

学術の社会実装

グリーンものづくり

レシピを作れるプロセスケミスト

- ・28件以上の共同研究、33件以上の学術・技術指導、12件以上の奨学寄附金
- ・29件以上の企業等の共同出願特許

間瀬 暢之 学術院工学領域 化学バイオ工学系列 教授

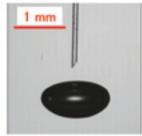
その他の社会連携活動

- ・企業との共同研究多数
- ・企業での講演多数
- ・高校への出張講義、高大連携
- ・市民講座、グリーンサイエンスカフェ
- ・研究開発専門委員会(マイクロ波、有機触媒)
- ・ファインバブルものづくり研究会
- ・ファインバブル発生装置の市販化
- ・フロー反応装置の共同開発

- ・ファインケミカルズ(医農薬・香料・特殊化成品)合成
- ・ファインバブル、超臨界二酸化炭素、水中、マイク 口波、フローなどの特殊反応場における物質合成
- ・分子構造解析や異性体分離・純度決定

□ 光ファイバーを用いた気泡・液滴の径/速度/数密度計測技術


□ 三次元光線追跡シミュレーション技術


キーワード:気泡、液滴、光ファイバー計測、光線追跡シミュレーション

気体と液体が混在する流れは気液二相流と呼ばれ、私たちの身近で広く見られる流動です。雨や霧、台風などの気象現象も広義の気液二相流であり、地球環境と密接に関係しています。

ものづくりにおいても例外ではありません。化学プラントや発電プラント、浄化槽などの大規模な設備から半導体製造工程といった微小領域まで、大小様々な気液二相流が現れ、その流動条件が装置の安全性・効率・歩留りと直結しています。そのため、装置内の流動を詳しくモニタリングする測定技術が必要です。実験室の限られた条件ではなく、現場で実現出来る測定法が求められています。本研究では、気液二相流、特に気泡や液滴を測定ターゲットとする計測技術を開発しています。

センサーに利用するのは、光通信網に使用される光ファイバーです。太さが髪の毛程度の光ファイバー先端を独自に加工し、コーン状や竹槍状にします。こうすることで、様々な大きさ・速度の気泡・液滴に対応可能なセンサーを作ることが出来るのです。 また、光を用いた計測のため、非常に微小かつ高速な現象を逃さず捉えられる点がメリットです。研究室では光ファイバーだけに留まらず、光計測による流体現象の解明を目指し、独自技術の開発に日夜挑戦しています。

(左図)測定対象の一例、水中を上昇しながら流動する大小様々な気泡流の様子。

(中図) 竹槍状の加工を施した光ファイバーセンサーによる単一気泡計測の様子。

(右図)独自の三次元光線追跡法によるシミュレーション。 光ファイバーから水中へ漏れ出た光が気泡界面で反射する様子を再現したもの。

- ・光ファイバーの高い耐環境性(耐熱・耐薬品など)を活用した実機内の直接計測が強み。測定器の持ち込みによる要素試験機の実測やフィールドワークなどの実績多数。
 - ○鉄鋼メーカーの鋼板冷却スプレーにおける液滴粒径・飛翔速度の計測
 - ○発電プラントのモデル試験機における微小かつ高速な液滴の計測
 - ○化学メーカーのバブリング反応槽における気泡径・速度や空隙率の計測
 - ○廃棄乳のオゾン気泡処理槽におけるオゾン気泡径・速度や空隙率の計測 など
- ・環境に応じて多様な挙動を呈する気泡・液滴などの気液二相流に対し、何の手掛かりも無いまま数値シミュレーションだけで予測を行うことは困難です。また、実験室スケールに落とし込んだ計測結果が実態とそぐわないケースが流体現象ではしばしば見られます。「実機内でどんな流れが起きているのか」、「シミュレーション結果評価のため実測を行いたい」などのニーズに応えるべく、現場環境に柔軟に対応可能な測定方法を提案します。

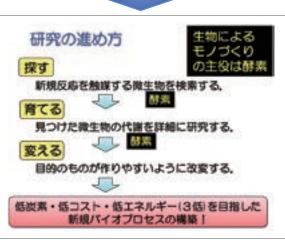
その他の社会連携活動

・日本機械学会 熱工学部門 広報委員(R2-3)

社会連携へ向けたアピールポイント

水嶋 祐基 学術院工学領域 機械工学系列 助教

- ・混相流現象の光計測
- ・三次元光線追跡シミュレーション
- ・光ファイバーを用いたセンシング開発
- ・高速現象の撮影、可視化



- 工業的に利用可能な微生物を自然界から見つけ出す.
- それら有用微生物の酵素の機能を解析. 改変する.

キーワード:微生物スクリーニング、微生物生産プロセス、低栄養性細菌、糖質関連酵素

微生物を探す・育てる・変える

細菌、酵母、カビなどの微生物は伝統的な発酵食品 だけでなく、私たちにとって有益な様々なモノづくり (薬、アミノ酸、燃料など)に使われています、環境汚 染物質など、私たちにとって不要な物質の分解もモノ づくりの一部です.

微生物でSDGs (持続可能な開発目標)に どのように貢献できるのか?!

微生物を用いた物質生産プロセスはそれだけでも広 い意味でのSDGsに貢献しています. 吉田研究室では、 もっと持続的な,もっと現実的な微生物プロセスの開 発を目指しています.

現在の主な研究テーマ

(微生物によるモノづくりの主役は酵素なので、特に酵素の研究に重きを置いています.)

(1)超低栄養性細菌によるバイオ燃料生産および未利用資源の活用,(2)無水糖を分解する微生物の基礎と応用,(3) ヒトの健康に役立つ物質の微生物生産

最近の研究成果

- ・静岡県の企業との共同研究で,レボグルコサンという糖を分解できる好熱菌を発見し,食物繊維の高純度化に 成功しました(https://www.nikkei.com/article/DGXMZO31628170R10C18A6L61000).
- ・兵庫県の企業との共同研究で、抗老化物質として注目されているニコチンアミドモノヌクレオチド(NMN)を 生産する乳酸菌を発見しました(https://www.shizuoka.ac.jp/news/detail.html?CN=7168).

研究室HP:

https://wwp.shizuoka.ac.jp/ yoshida-cb-shizuoka/

研究室Facebookページ:

https://www.facebook.com/ SU.CB.NY/

その他の社会連携活動

- ・企業との共同研究
 - ・日本農芸化学会などの委員
 - 浜松市開発審査会委員
- ・高等学校への出張講義(微生物,バイオテクノロジーなどに関するもの)

信行 吉田 学術院工学領域 化学バイオ工学系列

准教授

- ・有用物質を生産する微生物の検索
- 有用酵素の開発

社会連携へ向けたアピールポ

研究の概要

【代表的な研究テーマ】

□ カンキツ果実における機能性成分の生合成メカニズムの解明□ カンキツ果実における機能性成分の高含有化技術の開発

+-D-F: カンキツ、β-Dリプトキサンチン、ノビレチン、ビタミンC

 β - クリプトキサンチンは、カンキツ特有のオレンジ色のカロテノイド色素です。この色素は、ビタミンA効力を有するほか、ガン、糖尿病、骨粗しょう症といった生活習慣病の予防が期待される機能性成分です。静岡特産のウンシュウミカンには、この β - クリプトキサンチンが豊富に含まれています。また、ノビレチンは、カン

キツ特有のポリメトキシフラボノイドで、 発ガン抑制効果やアルツハイマー病の予防 が期待される機能性成分です。静岡特産の ポンカンや沖縄のシークヮーサーの果皮に 多く含まれています。

本研究では、カンキツ果実における特有の機能性成分を高含有化させ、高品質・高機能な果実をつくる技術の開発を目指します。さらに、β-クリプトキサンチンおよびノビレチンの生合成に関わる遺伝子の発現解析を行うことにより、それらの蓄積メカニズムを解明し、高含有化技術を科学的根拠に基づいた技術とします。

・特筆すべき研究ポイント:

これまで、β-クリプトキサンチンの高含有化メカニズムを、ウンシュウミカンの培養した砂じょう(果肉部分、写真) および果実において、カロテノイド生合成に関わる遺伝子の発現を調査することにより解明を行って

きました。 β - クリプトキサンチンとノビレチンはカンキツ特有の機能性成分であり、他の果実や野菜にはほとんど含まれていません。また、これら成分は一部のカンキツ品種にしか含まれていません。

本研究では、 β – クリプトキサンチンおよびノビレチンを高含有化する条件を確立します。本技術を開発することにより、 β – クリプトキサンチンとノビレチンが豊富に含まれる高品質・高機能なカンキツ果実を作出することが可能となります。

加藤 雅也 学術院農学領域 生物資源科学系列 教授

■ その他の社会連携活動

1)主な専門分野 収穫後生理学

2)研究内容

- ・収穫後の園芸作物(果実、野菜、花)におけるエチレンの生合成・作用に関する研究
- ・収穫後の園芸作物におけるアスコルビン酸(ビタミンC)の生合成・分解に関する研究など

- ・果実の成熟、野菜や花の老化、鮮度保持について
- ・果実、野菜、花のカロテノイドおよびフラボノイドについて
- ・果実、野菜のビタミンCについて

【研究テーマ】

プロジェクト研究所の概要

社会連携へ向けたアピールポイント

■ 静岡特産みかんの栽培から貯蔵に至る果実の品質に関する研究

+ーDーK: カンキツ、β – Dリプトキサンチン、ノビレチン、ビタミンC、アントシアニン

静岡みかん研究所

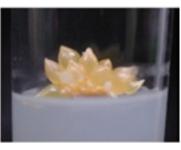
静岡みかん研究所では、静岡特産のみかんについて、栽培から貯蔵に至る果実の品質に関する研究を行っています。みかんなどのカンキツ果実には、ビタミンCや機能性成分が豊富に含まれています。 β -クリプトキサンチンは温州みかんに含まれる橙色のカロテノイド色素で、ビタミンAとしてはたらくほか骨粗しょう症の予防が期待されます。また、ノビレチンは沖縄のシークヮーサーや清水特産の太田ポンカンの果皮に含まれるフラボノイドで、アルツハイマー病の予防が期待されています。私たちの研究所では、このような健康に良いとされる栄養成分や機能性成分が果実においてどのように生合成され、蓄積するのかを研究しています。また、私たちの研究所では、カンキツ果実の成熟に関わる研究も行っています。特に、クロロフィル代謝やカロテノイド代謝に着目し、果実の成熟に関わる種々の要因を調査しています。

以上のように、静岡みかん研究所は、静岡大学にて静岡のカンキツ産業に資する研究を行うことで、カンキツ 果実の成熟を制御し、高品質、高機能な果実を作出するための栽培技術、貯蔵技術に繋げていきます。

みかん研究所では、静岡特産のみかんについて基礎から応用に至る研究を行っています。 本プロジェクト研究所では、具体的には次のような研究を行っています。

1. カンキッ特有の栄養・機能性成分についての研究

β-クリプトキサンチンが蓄積するしくみを解明し、高含有化できるような栽培・貯蔵条件を研究しています。写真左のような砂じょう (果肉) を培養して研究しています。


静岡の清水地区特産の太田ポンカンの果皮に多く含まれるノビレチンが、果実でどのようにつくられるか研究しています。

2. カンキツに蓄積する赤色色素のβ-シトラウリンについての研究

紅みかん (写真中央) をご存知ですか?紅みかんには、カンキツ特有の赤色色素のβ-シトラウリンが蓄積します。普通のみかんよりも赤く、見た目が良くみえます。

3. ブラッドオレンジに蓄積するアントシアニン(写真右)の研究

ブラッドオレンジの果肉には、アントシアニンという赤色の色素が蓄積します。このアントシアニンの蓄積は栽培条件により変わることから、安定して蓄積させる栽培や貯蔵方法を研究しています。

プロジェクト研究所 所長

加藤 雅也 学術院農学領域 生物資源科学系列 教授

■ 研究所メンバー

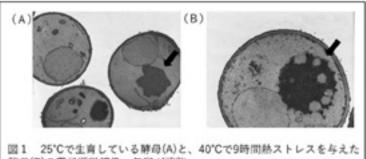
- ・馬 剛(静岡大学農学部 助教)
- ・張 嵐翠(農学部 特任助教)
- ·八幡 昌紀(農学部 准教授)
- ・島田 武彦(農研機構)
- ・山家 一哲(静岡県立農林環境専門職大学)
- Pongphen Jitareerat (KMUTT)
- ・Samak Kaewsuksaeng (タクシン大学)

- ・果実の成熟、野菜や花の老化、鮮度保持について
- ・果実、野菜、花のカロテノイドおよびフラボノイドについて
- 果実、野菜のビタミンCについて

持続的な熱ストレスに対する細胞内変化の解明

細胞内タンパク質の品質管理機構の解明

キーワード: 熱ストレス、地球温暖化、酵母、細胞内小器官


1. 持続的な熱ストレスに対する細胞内変化の解明

地球温暖化に伴い、真夏の日には、生物は過酷な高温度下に長時間晒される機会が増えることが予想されます。 このような環境におかれた時、細胞の中では、どのような変化が起きているのでしょうか?この問いを解明する ために、ヒトと同じ真核生物である出芽酵母を用いて、亜致死的な温度の熱ストレスを持続的に与えた時の細胞 内変化を解析し、細胞がどのように熱ストレスに対処しているかを解析しています。特に、細胞内小器官の核と 液胞の形態変化に着目しています。

研究の概要

2. 細胞内タンパク質の品質管理機構の解明

タンパク質は、細胞の中でさまざまな働きを 担っており、タンパク質が活性を保ち、また 状況に応じて分解されることは細胞活動に必 要です。細胞内には、これらのタンパク質の 品質を守るさまざまな仕組みがあります。私 たちは、この仕組みを出芽酵母を用いて解明 しています。


酵母(B)の電子顕微鏡像。矢印が液散。

・特筆すべき研究ポイント:

- ▶遺伝子操作技術
- ➤各種酵母変異体の構築
- ➤細胞内局在変化の観察
- ▶酵母の生育・培養

· 関連書籍、論文等:

- 1) The role of Atg8 in the regulation of vacuolar membrane invagination. Scientific Reports 9/ 14828 (2019年)
- 2) タンパク質の品質管理と神経変性 Annual Review 神経 p206-211.(2014年)
- 3) 古くて新しい熱ストレス応答 化学と生物 58:151-156. (2020年)

木村 洋子 学術院農学領域 応用生命科学系列 教授

その他の社会連携活動

- ・日本生化学会 評議員・代議員
- ・酵母遺伝学フォーラム 運営委員
- · 日本農芸化学会中部支部代議員
- ・厚生労働省・薬事・食品衛生審議会専門委員(2009年1月~2017年1月)

- ・遺伝子工学・生化学的技術
- ・酵母の遺伝学的解析・培養
- ・細胞生物学的技術
- ・女子中高生、女性研究者支援

□ ニーズに応じた園芸作物生産のための技術の開発

□ 農業ビジネスの可能性を広げる生産支援技術の構築

キーワード:野菜園芸学、養液栽培、ストレス耐性、高品質化、植物工場

植物は過酷な環境(ストレス)で生きる術をもっていますが、人が栽培してストレスを緩和してあげるとよりすくすくと育つことができます。その一方で、栽培管理を誤ると途端に調子が悪くなり、次々とトラブルが発生します。このようなトラブルの原因が「ストレス」で、ストレスを受けた植物は、そのストレスに耐えるために様々な適応戦略を発揮します。その結果、おいしい野菜ができたり、人間の体にいい有用成分を蓄積した野菜ができたりします。つまり、植物の栽培環境でのストレスを診断して適切に対処できれば、さまざまなニーズに応じた作物を生産することができるのです。

研究の概要

野菜園芸学研究室では、土を使わない"養液栽培"と呼ばれる技術を利用した研究を行っています。この栽培技術は、水や養分の吸収に関する作物のストレスを緩和できるため、生育が早く、安定する技術として普及していますが、逆に養水分の吸収を技術的にコントロールできれば、ストレスを活用して、おいしさを高めたり、有用成分を蓄積させることもできるのです。このように生産物の品質を自在にコントロールできるようにする生産技術に役立てるための基礎研究を行っています。

特筆すべき研究ポイント:

- ・園芸学の基本である技術の応用を基本とした基礎研究に取り組んでいるため、作物生産に関連する現場に直結した技術を提供できます。
- ・安心・安全・安定をキーワードに、食料、環境、健康にかかわる様々な課題を解決するための新しい生産技術 に関する研究を目指しています。
- ・新しく開発した技術を作物生産に応用することを検討しているメーカ様との共同研究を積極的に行っています。

関連書籍等:

社会連携へ向けたアピールポイント

- ・養液栽培のすべて (社)日本施設園芸協会/日本養液栽培研究会 共編 誠文堂新光社(2012)
- ・養液栽培実用ハンドブック 日本養液栽培研究会編 誠文堂新光社(2018)

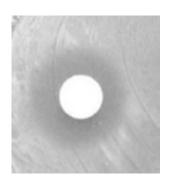
切岩 祥和 学術院農学領域 生物資源科学系列 教授

■ その他の社会連携活動

- ・国や県の各種プロジェクト研究等の外部評価委員
- ・日本養液栽培研究会運営委員

- ・園芸作物の養液栽培に関する事項
- ・農業ビジネスにおける新規事業に関する事項

【代表的な研究テーマ】


微生物由来抗菌ペプチドの探索

微生物の育種

キーワード:発酵生産、微生物制御、生理活性物質、抗菌物質

微生物は、発酵産業において多く用いられています。特に、放線菌は抗生物質生産において重要な微生物で、 その生産制御は非常に難しいです。とくに、生産量の少ない物質の安定的な生産は非常に重要な課題であり、リ ボゾーム工学と呼ばれる手法で生産量の増大が可能であることが分かっています。そこで、発酵微生物を用いて その生産制御を行い、生産量の少ない物質の生産量の向上を行っています。現在、特に微生物の産生する抗菌ペ プチドに関して研究を行っています。

研究の概要

発酵生産されたペプチドの 抗菌活性 医薬、食品工業への応用

- 1. 地域の微生物資源の開発など、環境中から有用な微生物の探索が行えます。
- 2. 発酵産業全般に関して、微生物育種等を通した生産性向上などが行えます。
- 3. 低分子性有機化合物の化学分析が行えます。
- 4. ゲノム情報から二次代謝産物の生合成遺伝子の解析が行えます。

学術院農学領域 応用生命化学系列 准教授

その他の社会連携活動

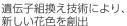
- · 日本農芸化学会会員
- · 日本生物工学会会員

- ・微生物の育種
- · 発酵技術
- ・ペプチドの化学分析

研究の概要

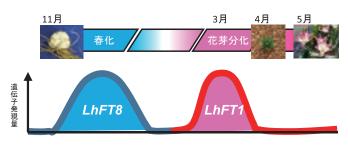
社会連携へ向けたアピールポイント

植物の色やかたちをデザイン


植物の開花や休眠のコントロール

キーワード: 花色、花型、開花制御、遺伝子組換え

植物に多彩な花色が存在しています。また、バラやユリの中にも、様々な花色をもつ品種が育成されています。 アントシアニンやベタレイン、カロテノイドなどの植物色素は、花弁や果実に蓄積することで様々な色を表現し ています。花色には、赤や黄色、青などの色の違い以外にも、濃淡、模様、光沢など、多様な広がりが存在しま す。私たちは、花色やその濃淡、模様を制御する遺伝子を明らかにしています。花色以外にも、花のかたちや開 花制御に関するメカニズムの解明を研究しています。分子メカニズムを解析から、育種に応用できるツールの開 発や栽培技術への応用にも取り組んでいます。


遺伝子組換え技術を用いて、従来育種では育成できないような形質をもった花の作出に挑戦しています。

花色や花型などの形質に 関わる遺伝子を探索

ユリの春化と花芽誘導のメカニズムを解明 開花調節に活用

特筆すべき研究ポイント:

- 1) 実用的な園芸植物に対する研究ノウハウがあり、花卉以外の植物種の課題にも対応できる
- 2) 栽培および育種などの諸問題を解決
- 3)遺伝子工学からフィールド栽培まで、幅広い視点でのアプローチ

関連書籍等:

太田ら. Planta 255: 29. 2022. リンドウの花模様形成

富澤ら. Plant Biotechnology 38: 323-330. 2021. ベタレイン色素による花色改変

Nurainiら. Planta 251: 61. 2020; Hort J 90: 85-96. 2021ストックの花色着色メカニズム

中塚ら (2019) Plant Science 287: 110173. シンビジウム花色の退色

中塚・小石 (2018) Plant Science 268: 39-46. ストックの八重咲き性

中塚ら (2015) BMC Plant Biology 15: 182. リンドウの八重咲き性

黒河ら (2020) Frontiers Plant Science 11: 570915. ユリの花成メカニズム

中塚ら (2018) 園芸学研究 17(2). リューココリネ休眠打破

研究室HP: https://sites.google.com/site/shizuokaflower/

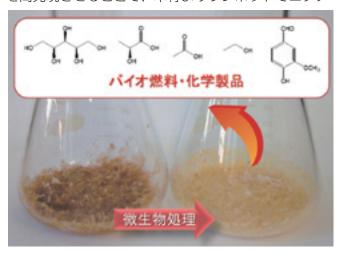
中塚 貴司

- ・園芸作物の生理現象の原因解明
- ·植物組織培養、増殖技術
- ・アントシアニンなどの二次代謝物解析
- ・園芸作物の育種に関すること

【代表的な研究テーマ】

□ 白色腐朽菌を用いた木質バイオリファイナリーに関する研究 □ 白色腐朽菌を用いたバイオレメディエーションに関する研究

キーワード: 白色腐朽菌(キノコ)、バイオマス利用、環境浄化、分子育種


シイタケ、ヒラタケ、エリンギといったキノコは、実は『白色腐朽菌』と呼ばれる微生物の仲間であり、自然界では木材の分解を行うといった、地球上の炭素循環の一翼を担っています。

地球温暖化、人口増加、環境汚染等の地球環境問題を解決すべく、私達の研究室では、この白色腐朽菌を用いて、以下のような事を明らかにしてきました。

(1)化石資源依存型社会からの脱却、二酸化炭素排出削減を目標に、木材よりバイオ燃料やプラスチック原料を生産する技術(木質バイオリファイナリー)を確立すべく、白色腐朽菌の分子育種を行い、エタノール発酵の鍵酵素であるピルビン酸デカルボキシラーゼ(PDC)遺伝子を高発現させることで、木材よりワンポットでエタノール

を産生可能な株の作出に成功しました。さらに、生分解性プラスチックであるポリ乳酸の原料である乳酸を木材より産生すべく、白色腐朽菌由来PDC遺伝子をノックダウンするとともに、乳酸デヒドロゲナーゼ遺伝子を高発現させ、木材よりワンポットで乳酸を産生可能な株の作出に成功しました。

(2)微生物を用いた環境修復技術を構築すべく、 白色腐朽菌を用いて、アフラトキシンB₁(カビ 毒)、ビスフェノールA(環境ホルモン)、ネオニ コチノイド系殺虫剤の分解・無毒化に成功しま した。

【白色腐朽菌を用いた木質バイオリファイナリー】

日本は、国土面積の約2/3が森林であることから、日本の森林を『油田』とすることで、日本もエネルギー輸出国となれる可能性を秘めております。さらに、樹木は光合成といった「炭素固定能」を有しており、森林が機能するだけでも、大気中二酸化炭素濃度は下げることが可能です。この様な観点から、我々と一緒に連携可能な自治体・団体等を探しております。

【白色腐朽菌を用いたバイオレメディエーション】

科学技術は日進月歩で、様々な化合物が作り出されております。開発当時は「安心・安全」と謳われていた化合物も、時には毒性を示し、使用が禁止されるケースも多々あります。さらに、この様な化合物が環境を汚染してしまうこともあります。汚染された環境を低コスト・低環境負荷型で浄化するのがバイオレメディエーションです。この様な技術を試してみたいという自治体・団体等がございましたら、いつでもご連絡ください。

平井 浩文 学術院農学領域 応用生命科学系列 教授

■ その他の社会連携活動

- ・静岡大学 未来社会デザイン機構 サステナビリティセンター 生物資源高度化利用部門 部門長
- ・静岡大学 グリーン科学研究所 グリーンエネルギー部門

- ・微生物の有効利用
- ・バイオマス利活用
- · 成分分析

【代表的な研究テーマ】

性別・多様性に配慮した防災と災害対応の研究

災害につよい地域社会の研究

キーワード:災害時のニーズ、地域防災、性別、多様性

1. 性別・多様性に配慮した防災と災害対応の研究

東日本大震災以降、災害への備えや災害時の被災者支援に男女共同参画と多様な立場の人々の視点が導入され るようになってきました。自主防災組織、避難所運営の備え、防災訓練などにおいて、具体的にどのような体制 が有効か、どうすれば地域で実践しやすくなるのかについて、被災地の支援状況などの調査に基づき研究してい ます。

また、地域の防災活動へ、女性や若い世代が関心を持って参加できるためには、どのような仕組みや研修が有 効かについても研究しています。

研究の概要

2. 災害につよい地域社会についての研究

性別や年齢、障害の有無など、被災者がおかれた立場別に被害や復興の状況を把握し、被害の格差が生じた原 因を研究しています。成果を、災害に強い社会づくりに反映することが目的です。

多様な人々の視点を取り入れた防災・減災の取り組みを応援します!

1. 自主防災組織(地域の防災の担い手のみなさま)向けの講座・ワークショップ

例:中原自治会(静岡市駿河区)のワークショップ (静岡市女性団体連絡会との連携事業) ①コロナ禍における避難所利用のルールづくり、②避難行動要支援者の避難対策

2. 自治体職員(危機管理担当、人権・男女共同参画関担当など)研修

例:国立女性教育会館 「男女共同参画の視点による災害対応研修」 https://www.nwec.jp/event/training/g_saigai2020.html

3. 自治体の防災体制づくり

例:佐賀県立男女共同参画センター「男女共同参画の視点を 取り入れた避難所運営の手引き」作成アドバイザー

4. 防災の担い手育成・一般市民向け研修

例:静岡市女性会館 Jo-shizu 防災講座、ふじのくに防災士講座 静岡県地域で活躍する女性防災リーダー育成事業

5. 防災教材の作成

例:京都府・市 男女共同参画センター 避難所運営カードゲーム

■ その他の社会連携活動

- ・外務省「女性・平和・安全保障に関する行動計画 評価委員会」 委員(2016年~)
- ・静岡県社会福祉協議会 地域づくり推進委員会 委員長(2018年~)
- ・減災と男女共同参画 研修推進センター 共同代表(2014年~)

池田 恵子 学術院教育学領域 地域創造学環 教授

- ・防災にかかわる研修講師の育成(TOT)
- ・防災を切り口にした学校と地域の連携
- ・災害時の女性と子どもの安全対策

□ 社会的費用(環境問題によるコスト)の負担原則と社会制度の設計□ 地球温暖化対策のための政策・措置

キーワード: 社会的費用、自動車交通、地球温暖化対策、エネルギー政策、地域環境政策

- ・市場経済では、企業や家計などの経済主体は、便益(利益、効用、所得など)を得るために私有する資源(生産設備、食料、労働力など)を自由に利用して自由に経済活動(生産、消費、労働など)を行うことが認められています(「経済活動自由の原則」)。ただし、自らの経済活動の「犠牲となるもの」、つまり「費用」は自ら負担しなければならないことが、市場経済の大前提です(「費用自己負担の原則」)。しかし実際には、「費用」の多くの部分が、それを負担すべき経済主体ではなく、第三者ないしは社会全体に押しつけられている状況が少なからず存在しいています。その典型的なものの一つが環境問題です。これまで日本を含め多くの国では、このような状況を改善するために様々なルールづくりをしてきており、産業公害(工場公害)については、多くの国々で一定の成果をおさめてきました。しかし環境問題は多種多様で、それを防除するためには、それぞれの問題にあった適切なルール作りが必要です。私はとくに、自動車交通による大気汚染と地球温暖化という2つの環境問題を軸に、その防除のためにどのような社会的ルールをつくったらよいのかを研究しています。
- ・私のもう一つの研究分野は、地域の環境やエネルギーの問題に取り組むことです。こちらは、前記のような理論的な研究ではなく、極めて実践的な研究です。たとえば、各地方自治体では、「環境基本計画」や「地球温暖化対策実行計画」、「地域エネルギー計画」などを策定していますが、それぞれの地域の特徴や強みを活かして、どのような政策・措置や事業を盛り込んでいくことが有効なのかを研究しています。またその際、計画・策定過程でも、実施過程でも、広く地域の市民や企業・事業者が参画できる仕組みづくりを重視しています。この分野での研究成果が「論文」になることはまれですが、地域での実際の取り組みに関わることができ、地方国立大学の教員としてはやりがいを感じられる分野でもあります。
- ・過去に静岡県内の自治体で私が関わらせていただいた環境系・エネルギー系の「計画」や「戦略」は、30以上になるかと思います。
- ・地域の環境計画(環境基本計画、地球温暖化対策計画、エネルギー計画など)の作成、企業のCSR報告書作成アドバイス及び第3者評価等について、問い合わせにおこたえできます。

関連書籍等:

社会連携へ向けたアピールポイント

- ・『2010年地球温暖化防止シナリオ』 実教出版 2000年 (共編著)
- ・『地域発!ストップ温暖化ハンドブック』 昭和堂 2007年 (共編著)

静岡県地

静岡県地球温暖化防止県民会議(計画検討評価部会長)、ふじのくに生物多様性地域戦略推進会議(委員)、静岡県緑化推進有識者会議(座長)、富士宮市環境審議会(会長)、富士宮市ごみ減量化等市民懇話会(座長)、三島市環境審議会(会長)、御前崎市情報公開審査会(会長)、御前崎市エネルギービジョン推進協議会(会長)

水谷 洋一 学術院人文社会科学領域 経済・経営系列 教授(環境政策)

■ 相談に応じられる関連分野

その他の社会連携活動

- ・地域の環境計画(環境基本計画、地球温暖化対策計画、エネルギー計画など)
- ・企業のCSR報告書作成アドバイス及び第3者評価

【代表的な研究テーマ】

□ 地域共生社会におけるまちづくりの可能性

□ インターネット上における差別情報の規制と被害回復

キーワード: 共生、ダイバーシティ、まちづくり、地域福祉

□地域共生社会におけるまちづくりの可能性

2015年、生活困窮者自立支援法が成立し、2016年、部落差別解消推進法、ヘイトスピーチ解消法、障害者差別解消法が成立しました。厚生労働省は、これらの諸法律を生かした地域共生社会の拠点として、社会福祉法に規定された「隣保館」と言われる施設の活用を推奨しています。セツルメントという宗教者や知識階級の社会実践にルーツを持つ施設は、現代のまちづくりの拠点であり、人権と福祉の拠り所にもなる可能性を持っています。全国調査や国際比較を進めながら、静岡県では、学生たちと実態調査を行い、国や県に対する提言書をまとめました。

□インターネット上における差別情報の規制と被害回復

情報化の進展とともに、インターネット上での人権侵害が後を絶ちません。 法務省や総務省を中心に、有害情報の規制が進められていますが、国際的な 水準においても十分ではありません。SNSなどの拡がりなどもあり、市民社 会のリテラシーも未発達です。特に、コロナ禍を通じて、偏見と差別が社会 に蔓延し、ネットとリアルの世界双方で悪化しています。被害にさらされや すいマイノリティに対する差別情報の規制と被害回復に関する研究を進めて います。

□「当事者」(マイノリティ)とともに共生関係を構築すること

ヘイトスピーチやインターネット上での悪質な誹謗中傷など、差別被害の問題は、法制度に関する議論に集中しやすいですが、問題は、被害からの回復です。実際に、法規制や裁判だけでは、被害からの回復は十分には達成されていません。被害を受けた「当事者」とともに、失われた関係性や共生実践の蓄積を再開・発展させる取り組みを行っています。

特に、近年、日本社会から強い排除対象となっている在日朝鮮人、被差別部落の人々、障害者、セクシュアルマイノリティ、ホームレスなどに関わって、マジョリティの「特権」の相対化と地域社会における共生の困難と課題について探求しています。

その際に大事にしているのは、私自身の研究活動だけではなく、学生たちとともに「当事者」と出会い、共生関係の構築の難しさと、それを乗り越える 実践的提案を行うことです。

山本 崇記

地域創造学環
学術院人文社会科学領域

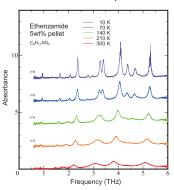
准教授

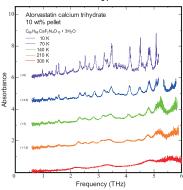
■ その他の社会連携活動

- · 人権擁護委員(法務大臣委嘱)
- · 公益財団法人朝田教育財団評議員
- ・特定非営利活動法人新たな崇仁まちづくりの会理事

- ·部落問題(同和問題)
- ・地域共生(移民、LGBT、ハンセン病等)
- ・まちづくり(コミュニティ)

研究の概要


テラヘルツレーザー分光測定装置


医薬品テラヘルツスペクトルデータベース

キーワード: テラヘルツ分光スペクトル、医薬品製品検査

テラヘルツ分光スペクトルを利用した医薬品品質検査ツール及び方法を開発している。 医薬品テラヘルツスペクトルデータベース (https://www.rie.shizuoka.ac.jp/~thz/database/)

医薬品テラヘルツスペクトルデータベース

独自開発したテラヘルツレーザー装置

◆テラヘルツレーザー分光スペクトル測定装置 (帯域幅 0.5 ~ 6.0 THz, 周波数精度 3 MHz) 特長:連続稼働、メンテナンスフリー、除振台不要

◆テラヘルツ分光イメージング装置 (最高出力 $^{\sim}1\mu$ W、周波数線幅 15GHz)

特長:連続稼働、低消費電力、メンテナンスフリー、 小型、低価格

テラヘルツレーザー分光測定装置

テラヘルツ光源開発、装置開発・実用化のほか、測定の受託・共同研究も可能。 共同研究への発展を前提とした「お試し測定」制度(有償)も設けています。

特筆すべき研究ポイント:

成分分析、結晶形識別、結晶性評価や分子振動解析ツールに適している。

・従来技術との差別化要素・優位性:

- 連続波レーザー方式とすることで高い周波数精度が得られると同時に、 小型化、操作容易性、低価格が実現。

佐々木 哲朗 大学院光医工学研究科

その他の社会連携活動

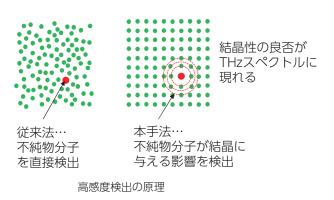
日本学術振興会 産学協力研究委員会 「テラヘルツ波科学技術と産業開拓」第182委員会 幹事長

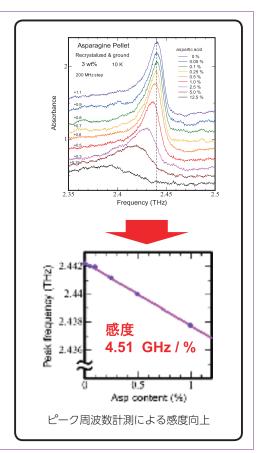
相談に応じられる関連分野

- ・テラヘルツ分光
- ・テラヘルツイメージング
- ・レーザーの開発と応用

社会連携へ向けたアピールポイント

極微量不純物を検出する新規的手法


キーワード: 医薬品、極微量不純物検出、テラヘルツ分光スペクトル、製品検査


医薬品原薬に含まれる微量の不純物を検出するとき、その不純物分 子自身を直接検出することは難しいが、テラヘルツ分光スペクトルで は不純物分子が母体結晶に与える影響として検出するので、高感度の 不純物検出が実現できる。

具体的には、不純物の存在によって、吸収周波数がシフトするので、 MHzオーダーの分解能を持つ高精度のテラヘルツレーザー分光装置 を用いることで、ppmオーダーの不純物を検出・定量することがで きる。

研究の概要

社会連携へ向けたアピールポイント

・特筆すべき研究ポイント:

微量不純物検出に必要な、約6桁の周波数精度と1桁の帯域幅を両立するテラヘルツレーザー分光スペクトル 測定装置は世界に類がない.

・従来技術との差別化要素・優位性:

- 医薬品原薬中の不純物検出には、液体クロマトグラフィー (LC)法のような化学的手法が一般的に用いられて いるが、この方法は医薬品原薬に類似する化学種や近い分子量の不純物を苦手とするので、実際のプロセスラ インで原薬に混入しやすい"原材料"、"副生成物"、"分解生成物"などの検出は得意ではない.いっぽう、本手 法は分子種や分子量には依存しないので、LC法を補完する手法となる。かつて薬害事件をもたらしたサリド マイドのような光学異性体不純物も検出可能である。

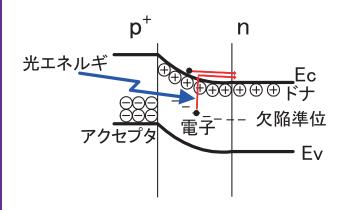
佐々木 哲朗 大学院光医工学研究科

その他の社会連携活動

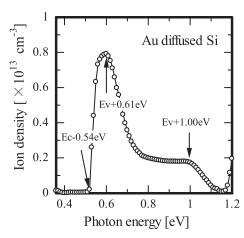
日本学術振興会 産学協力研究委員会 「テラヘルツ波科学技術と産業開拓」第182委員会 幹事長

- ・テラヘルツ分光・イメージング
- · 分子振動解析
- 有機分子結晶成長
- ・レーザーの開発と応用

半導体中の結晶欠陥解析(フォトキャパシタンス測定)


キーワード:半導体結晶欠陥、深い準位(deep level)、フォトキャパシタンス(PHCAP)測定

半導体中の結晶欠陥や不純物は、製品の歩留りや信頼性に深刻な影響を与える。フォトキャパシタンス測定 (PHCAP)は、極微量の結晶欠陥や不純物を高感度かつ定量的に検出できる手法である。フォトキャパシタンス 測定原理(左図)に示すように、空乏層中に存在する欠陥が作る深い準位(deep level)を、単色光でイオン化し、 その時のキャパシタンス変化から欠陥を検出するものである。


単色光の波長からエネルギー値を、キャパシタンス変化量から欠陥の密度を正確に算出できる。右図は金(Au) を故意に拡散したシリコンのフォトキャパシタンススペクトルの典型例である。横軸から準位エネルギーを、縦 軸から準位密度を求めることができる。

研究の概要

社会連携へ向けたアピールポイント

フォトキャパシタンス測定原理

フォトキャパシタンススペクトル例

フォトキャパシタンス測定の実用化のほか、測定の受託共同研究も可能。 共同研究への発展を前提とした「お試し測定」制度(有償)も設けています。

特筆すべき研究ポイント:

- 定容量法測定オプションによって、より定量性に優れるとともに、深い準位の空間分布の測定も可能。
- ・従来技術との差別化要素・優位性:
- ワイドバンドギャップ半導体を対象とする場合、DLTS法のような熱エネルギーを用いる方法ではエネルギー 帯域幅が不足するが、光エネルギーを用いることでバンドギャップのほぼ全帯域幅をカバーすることができる。

佐々木 哲朗 大学院光医工学研究科

その他の社会連携活動

日本学術振興会 産学協力研究委員会 「テラヘルツ波科学技術と産業開拓」第182委員会 幹事長

- ・半導体デバイス/プロセスの不良解析
- ・遠赤外線~近赤外線光源の開発と利用

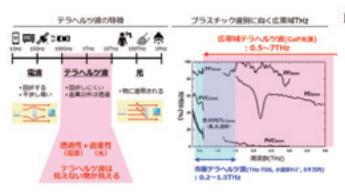
【研究テーマ】

プロジェクトの概要

社会連携へ向けたアピールポイント

□ プラスチック製容器包装廃棄物の高度選別装置の事業化

キーワード:テラヘルツ波、プラスチック製容器包装廃棄物、素材選別、再資源化


廃プラスチックを再資源化が求められている中で、新型コロナウイルス流行に 伴う巣ごもり需要等により容器包装廃プラスチックは更に増加しています。JST-STARTプロジェクトにおいて、静岡大学、芝浦工大学、東北大学が協働し、電波 と光の性質をあわせもつテラヘルツ波によるプラスチック素材の分別装置を開発、 本装置を製造・販売するベンチャー設立を目指しています。

テラヘルツ波を使用することにより、人間の目では判断できないプラスチックの 素材が解ります。容器プラスチックにはポリプロピレン(PP)、ポリエチレン(PE)、 ポリスチレン(PS)、ポリエチレンテレフタレート(PET)などの素材があり、周波数 と透過率から判断することができます。この技術を用いることにより、リサイクル 業者が手選別で行っている分別を助けることができ、有価物の獲得を促進します。

テラヘルツ波は、透過性と直進性を併せ持ち、見えない物が見えます。広帯域テラヘルツ波は、プラスチック の選別に適しているため、この技術を活用し、廃プラ高度選別機を開発しています。

特に、テラヘルツ波は着色剤の影響を受けにくいので、色付きプラスチックの識別も可能です。

テラヘルツ波を用いた廃プラ高度選別機を開発し、一般家庭から出た多様な廃プラスチックを中間処理・再商 品化する国内外の事業者に対して販売する予定です。2022年春に「プラスチック資源循環促進法」が施行される と、すべてのプラスチック製品がリサイクルの対象となります。今後、廃プラの選別需要と再生原料の需要がさ らに高まることから、廃プラ選別機は廃棄物選別分野における潜在力は大きいといえます。限りある資源を有効 活用し、循環経済社会を実現し、持続可能な開発目標達成を目指します。

プロジェクトメンバー

佐々木 哲朗 大学院光医工学研究科 教授

・佐々木 哲朗 (静岡大学)

・田邉 匡生 (芝浦工業大学)

・劉 庭秀 (東北大学)

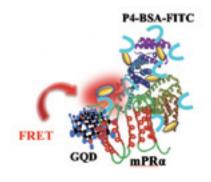
・眞子 岳 (東北大学)

静岡大学

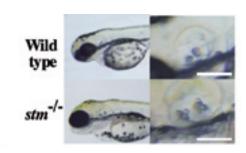
芝浦工業大学

東北大学

【代表的な研究テーマ】


ステロイド膜受容体をターゲットとした新薬のスクリーニング

魚類におけるゲノム編集


キーワード:ステロイド膜受容体、プロゲステロン膜受容体、スクリーニング法、ゲノム編集

ステロイドホルモンの作用は遺伝子を活性化し、新たにタンパク質を作り出すゲノミック作用であると信じら れています。例えばステロイド軟膏を傷に塗るとタンパク質が合成され、細胞が増え、数日間掛けてゆっくりと 傷口が治っていきます。これがゲノミック作用を実感できる例です。ところがステロイドホルモンは瞬間的とも 言える急性反応も引き起こします。これが我々の研究しているノンゲノミック作用です。例えば喘息の吸引薬は 瞬間的に発作を抑えます。我々はこのノンゲノミック作用を仲介する受容体である細胞膜プロゲステロン受容体、 mPRの働きについて研究していますが、そのためにmPRタンパク質を人工合成しました。このタンパク質を利 用することでmPRを標的としてノンゲノミック作用を強めたり、弱めたりする医薬品の発見が可能になる方法 を開発しました。

また、mPRの働きを解明するため、ゲノム編集法によってmPRの遺伝子の働きを抑えた熱帯魚(ゼブラフィッ シュ) を産み出して、mPRの異常によりノンゲノミック作用が伝わらなくなった場合に、魚にどの様な悪影響が 生じるかにより、mPRの仲介するノンゲノミック作用が動物の体の中でどの様な役割を果たしているのかを調 べています。

人工合成した細胞膜プロゲステロン 受容体、mPRタンパク質とグラフェ ンナノ粒子(GQD)を結合させた GQD-mPRを合成した。これに蛍光 を発するプロゲステロン-BSA-FITC を結合させて得られる蛍光により試 験物質がmPRに反応するホルモン 活性物質かどうかを評価する。

遺伝子ノックアウトにより耳石が星型に変化した稚魚

· 新規研究要素:

活性型ステロイド膜受容体の人工合成:世界初、ステロイド膜受容体遺伝子:日本初 ステロイド膜受容体タンパク質を用いたハイスループットスクリーニング系:世界初 魚個体そのものを用いたプロゲステロン様作用のアッセイ系:世界初

・従来技術との差別化要素・優位性:

ステロイド膜受容体分子そのものを用いたアッセイ系によるハイスループット化 簡便性と短時間化によるコストの低減

•特許等出願状況:

特許4501002号, 特許4528973号,特許6516956号,特許4501002号

関連書籍等:

「ステロイドホルモンの新しい作用のしくみ」 ナノバイオ・テクノロジー12章

■ その他の社会連携活動

・浜名湖のアマモ場の再生によるアサリの漁獲回復に向けた取り組み NPO法人 浜名湖 フォーラムとの共同活動

徳元 俊伸

創造科学技術大学院 学術院理学領域 教授

- ・新規ステロイド膜受容体について
- ・魚類におけるゲノム編集
- ・魚類の繁殖について

プロジェクトの概要

社会連携へ向けたアピールポイント

【研究テーマ】

浜名湖におけるアマモ場の再生によるアサリの資源回復に向けた共同研究

キーワード:アマモ、アマモ場再生、プロトプラスト

- ・浜名湖のアサリの激減によりアサリ漁が深刻な打撃を受けています。2015年頃から漁獲量が減少に転じ、現 在は最盛期の1/10にまで落ち込んでいます。潮干狩りもこの数年実施出来ない状況が続いています。地元の 浜名漁協関係者が立ち上げたNPO法人浜名湖フォーラムではこの不漁がアマモ場の減少に関連していると推 定し、アマモ場の再生に向けたアマモの植栽作業を開始しています。夏季にアマモの種を採取し、低温保存し、 冬季に粘土に埋め込んだ種を植え付けてアマモの生息域の復活を目指しています。本研究で実施するアマモの 高温耐性の株の選抜、プロトプラストからの増殖技術の開発によりアマモ場の再生事業の一助となることを目 指しています。アマモ場の再生の結果、アサリの資源量の回復へと繋がることで地域貢献が期待されます。
- ・尚、本プロジェクトは静岡大学サステナビリティセンターのプロジェクト助成を受け、ふじのくに海洋生物化 学研究所内の共同研究として実施しています。
- ・この取り組みが中日新聞にも取り上げられています(2021年8月31日)。詳しくは以下のURLにありますサス テナビリティセンターホームページのメディア掲載情報をご覧下さい。
- https://wwp.shizuoka.ac.jp/sustainability-ctr/information-2/media/

浜名湖弁天島のアマモ群落

・上述のようにこの取り組みはNPO法人浜名湖フォーラムの活動への協力という形でスタートしました。今後 は地元漁協や自治体との連携も視野に入れています。

浜名湖弁天島に設定した共同実験区

プロジェクトメンバー

徳元 創造科学技術大学院 学術院理学領域 教授

- · 笹浪 知宏 農学部教授 ふじのくに海洋生物化学研究所所長 農学部准教授 ふじのくに海洋生物化学研究所 ・富田 涼都
- 相談に応じられる関連分野
 - ・海藻からのプロトプラストの育成
 - ・アマモの室内育成

研究の概要

【代表的な研究テーマ】

□ 植物の低温ストレスタンパク質の機能研究

|植物の熱耐性を高める資材の研究開発

キーワード:植物の温度ストレス、天然変性タンパク質、バイオスティミュラント

- ・植物は、過酷な環境に耐えるため、late embryogenesis abundant (LEA) と呼ばれる一連のタンパク質を合成します。LEAタンパク質は、最近では、植物のみならず、極限環境で生存するセンチュウやクマムシなどにも見いだされ、生物のストレス耐性の根幹を担う重要なタンパク質と目されています。しかし、LEAタンパク質の機能は推測の域を出ておらず、科学的データの蓄積が必要です。私たちは、LEAタンパク質の中でも、決まった二次構造をとらないデハイドリンに注目し、その機能研究を進めています。特に、生体高分子に対する超低温保護機構をタンパク質の物性の面から解明しようとしています。
- ・気候変動による農業生産への影響を緩和するため、植物の高温耐性を高める資材の開発研究をしています。この資材は、植物の環境ストレス耐性を穏やかに高めるバイオスティミュラントとして農業現場で使用されています。より安全で効果的な資材の開発を目指しています。

・植物タンパク質の新しい利用方法を見つけます。

・バイオスティミュラントの利用に関する開発研究を行います。

原 正和 創造科学技術大学院 グリーン科学技術研究所 学術院農学領域 教授

■ その他の社会連携活動

- ・日本農芸化学会会員
- ・日本植物バイオテクノロジー学会会員

- ・植物タンパク質の利活用
- バイオスティミュラントの活用

プロジェクトの概要

社会連携へ向けたアピールポイント

□ 次世代シーケンサーを用いた解析の支援と受託サービスのご紹介

キーワード:ゲノム解析、トランスクリプトーム解析、メタゲノム解析、バイオインフォマティクス

- ・グリーン科学技術研究所 研究支援室ゲノム機能解析部では、遺伝子やゲノムを構成するDNAの配列情報と機 能を解析するための機器を始めとする多数の共同利用機器を管理・運営しています。特に近年の高速かつ大規 模なゲノム解析技術の中核となる機器である次世代シーケンサー MiSeq (Illumina社製)等を利用して、最先 端のゲノム研究を推進しています。
- ・次世代シーケンサーはゲノム解析だけでなく、個々の遺伝子に由来するmRNAの発現状況をモニタリングす るトランスクリプトーム解析や、特定環境に存在する生物集団の構成比の概要を明らかにするメタゲノム解析 などにも応用可能な機器なので様々な用途に利用できます。
- ・我々は学内向けゲノム研究支援だけでなく、学外からの 受託解析にも積極的に取り組んでおり、駿河湾の深海魚 の腸内細菌叢に関する共同研究や、静岡県内で単離され た乳酸菌のゲノム解析を通じた付加価値向上の試みな ど、既に多数の実績を上げております。産学官からの要 望に対してこれまで以上に積極的に応えていきたいと考 えておりますので、まずはお気軽にご相談ください。
- ・当受託解析サービスの利用手順につきましては 以下のURLもしくはQRコードよりご参照ください。 https://green.shizuoka.ac.jp/support/request/

新規に得られた有用な生物のゲノム情報を解読することで、ブランド化して付加価値を高めたり、より幅広い利 用者の拡大が見込めたり、特許化して産業防衛したり、あるいはさらなる学術的研究を進展させたりすることが 容易になります。特に、伝統的な発酵・醸造産業などでは次世代シーケンス技術は既に広く深く浸透しています。 また食品衛生管理などの面でも、当該環境からの悪玉菌などの検出などにも貢献可能です。皆様のご利用や共同 研究のご提案をお待ちしております。

- ・幅広い解析技法や解析プログラムに対応可能です。
- ・サンプル処理からデータ解析・公共データベースへのデータ登録まで、共同研究のご依頼内容に応じて様々な サービスをサポート可能です。
- ・特に微生物分野においては複数の専門スタッフが細かなご相談にも対応可能です。
- ・当部門がカバーしていない研究分野のご相談においては、ご要望に応じて本学内の近い分野の教員を紹介可能 です。お気軽にご相談ください。

プロジェクトリーダー

友 兼崎 グリーン科学技術研究所 研究支援室 特任助教

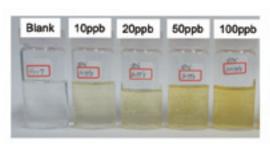
プロジェクトメンバー

- ・道羅 英夫 グリーン科学技術研究所 研究支援室 准教授
- グリーン科学技術研究所 研究支援室 技術専門職員 ・森内 良太
- ・鈴木 智子 グリーン科学技術研究所 研究支援室 研究支援員

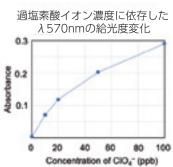
- ・次世代シーケンサーを用いた解析いろいろ
- ・微生物学
- ・生物情報科学の有用研究ツール等

【代表的な研究テーマ】

研究の概要


過塩素酸イオンの除去剤の開発

水溶液中の過塩素酸イオン、硝酸イオンの検出技術


キーワード:過塩素酸イオン、有害陰イオン除去、陰イオン呈色剤、硝酸イオン呈色剤

過塩素酸イオン(ClO₂¯)は、甲状腺のヨウ化物イオンの取り込みを阻害し、乳幼児や子供にとって有害な陰イ オンであることが知られています。過塩素酸イオンは火薬の原料として大量に合成され、また、漂白剤や殺菌剤 を合成する際の副生成物として生産されます。過塩素酸イオンは煮沸等でも分解されない高い安定性をもち、水 に溶けた状態ではほぼ分解されることはありません。乳幼児に害が及ぶ濃度はおよそ 25 ppb とされています が、水溶液中の過塩素酸イオンをこの低濃度レベルまで除去することは難しく、また、この低濃度レベルの過塩 素酸イオンを簡便に検出する方法も開発されていませんでした。この過塩素酸イオンが欧米を中心に水道水、牛 乳、フルーツなどから検出され社会問題となりました。

本研究では、1ppmを超える過塩素酸イオン水溶液を通過させるだけで 10ppbレベル以下に除去できる過塩 素酸イオン除去剤、および、10ppbレベル以上の濃度をもつ過塩素酸イオンを呈色させることができる過塩素 酸イオン呈色剤の開発に成功しました。飲用水や工業排水中の過塩素酸イオンを簡便に検出する技術として応用 が可能です。

イオン交換水中の過塩素酸イオンの呈色. 10ppbでも薄い黄色を呈色し、目視で確認できる

水道水(静岡市)に溶かした 過塩素酸イオンも、同様に 検出可能(水道水のみでは 着色しない)

また、過塩素酸イオン同様、フッ化ホウ素酸イオン (BF_4^-) 、硝酸イオン (NO_3^-) も乳幼児にとって有害な陰イ オンとして知られています。これらの陰イオンに対しても除去、および呈色活性を示す材料の開発に取り組んで います。

除去や検出が困難でありながら、人体に有害な陰イオンの除去、および検出技術の開発は、安全な飲用水の確 保や企業による生産活動の支援、さらに環境保全において重要な課題となっています。

従来は除去と検出が困難であった過塩素酸イオンに対する新しい除去技術、および呈出技術は、今なお除去や 検出が困難とされている陰イオンに対して十分な応用が期待されます。

陰イオンの除去や検出、定量が必要な分野と領域、現場に新しい手法を提案できる材料となります。

近藤 満 グリーン科学技術研究所

その他の社会連携活動

・静岡市立高等学校SSH運営指導委員会 委員長

- ・陰イオンの除去材料の開発
- ・陰イオンの呈色材料の開発

微生物の生物間相互作用(共生・寄生)の分子機構の解析

次世代シーケンサーを用いた機能ゲノム解析に関する共同研究

キーワード:次世代・第三世代シーケンサー、ゲノム科学、バイオインフォマティクス

生物は共生・寄生など多種多様な生物間相互作用のもとで生息しています。生物間相互作用は、個々の生物種 では作り出すことができない化合物を合成したり、新たな機能を生み出したりするイノベーションの原動力と なっています。そこで、クロレラと共生しているミドリゾウリムシや昆虫に寄生してキノコを作る冬虫夏草を用 いて、ゲノム解析やトランスクリプトーム解析、プロテオーム解析など最先端の解析技術を駆使して、生物間相 互作用の分子機構について解析を行っています。

・ミドリゾウリムシとクロレラの共生による藻類の光合成機能の強化

クロレラと共生しているミドリゾウリムシを強光条件下で培養し、次世代シーケンサーを用いてミドリゾウリ ムシとクロレラそれぞれの遺伝子発現を解析したところ、ミドリゾウリムシとクロレラが協調して酸化ストレス に応答していることが明らかになりました。この成果は光合成による酸化ストレスを軽減し、藻類の光合成機能 を強化する技術に利用できる可能性があると考えています。

・冬虫夏草のキノコ形成・二次代謝産物の生合成メカニズムの解明

冬虫夏草は宿主昆虫に感染してキノコを形成するという特殊な生活環 をもっています。このような生物間相互作用を介して形成された冬虫夏 草のキノコでは、菌糸体とは異なる様々な生理活性物質が産生されてい ます。現在、キノコ形成能の異なる株の比較ゲノム解析や菌糸体とキノ コの遺伝子発現差解析により、キノコ形成や二次代謝産物の生合成に関 わる遺伝子の解析を行っています。本研究を通じて、冬虫夏草のキノコ 形成や二次代謝産物生合成のメカニズムの解明を目指しています。

カイコ蛹への冬虫夏草の接種

グリーン科学技術研究所 研究支援室 ゲノム機能解析部では、遺伝子・ゲノムの構造と機能を解析するための 多数の共同利用機器を管理・運営しています。最近では、膨大なDNAの塩基配列を決定することができる次世 代・第三世代シーケンサーのニーズが非常に高くなっています。次世代・第三世代シーケンサーの普及により、 ゲノムシーケンスの高速化とコストの低下が進み、ゲノム科学に大きな変革をもたらしました。ゲノム機能解析 部ではデスクトップ型次世代シーケンサー MiSeq (Illumina) を保有していますが、用途に応じて他のプラット フォームも利用できる体制を整備しています。これらの次世代・第三世代シーケンサーを活用して、ゲノム解析 やトランスクリプトーム解析、メタゲノム解析等のバイオインフォマティクスの技術を駆使して、下記のような 活動を積極的に推進しています。興味のある方は、お気軽にお問い合わせください。

- ・次世代・第三世代シーケンサーを用いた機能ゲノム解析に関する共同研究
- ・Linuxサーバーを用いた各種バイオインフォマティクスによる教育研究
- ・学外向け次世代シーケンサー受託解析サービス

(Webサイト: http://www.shizuoka.ac.jp/~idenshi/NGS_gaibu_Top.html)

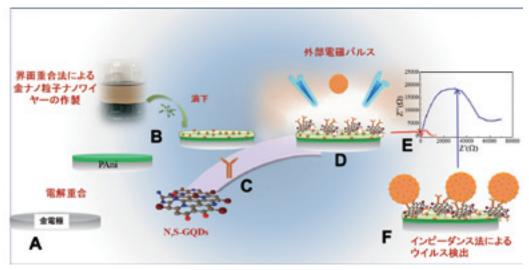
その他の社会連携活動

- ・ナショナルバイオリソースプロジェクト (NBRP) ゾウリムシ 運営委員会委員
- ・静岡大学公開講座「遺伝子の世界を見てみよう」(県内高校生対象、2013年~)
- ・スーパーサイエンスハイスクール・未来の科学者養成スクール等高校生の研究指導

社会連携へ向けたアピールポイント

英夫 道羅 グリーン科学技術研究所 研究支援室ゲノム機能解析部 准教授

- ・次世代シーケンサーによる大規模シーケンス
- ・各種バイオインフォマティクス解析
- ・LC-MS/MSを用いたプロテオーム解析


研究の概要

【代表的な研究テーマ】

高威度威染症原因ウイルスの検出法

キーワード:カイコ、タンパク質、バクミド、ワクチン

今世紀に入り、新興ウイルスや高病原性ウイルスが相次いで出現し、社会的脅威となっています。2014年夏、 東京の代々木公園を中心にデングウイルスが検出されました。昨今のCOVID-19のような高病原性ウイルスの パンデミックを阻止するためには、感染症状が出る前に迅速かつ正確にウイルスを検出する必要があります。現 在、一般的に普及しているイムノクロマト法による検出キットでは、感度が低く、イムノクロマト法に代わるウ イルス早期検出法の開発が喫緊の課題です。本研究では、ウイルスの存在を電気抵抗で表す高導電性電極を開発 し各種ウイルスの検出を行っています。

・特筆すべき研究ポイント:

- □pHメーターでpHを計測するように、検体からウイルスを測ることができます。
- □ウイルスの発生現場で検体を採取し、即時ウイルスの検出を行うので、ウイルスの拡散防止に非常に有効です。
- □有効な抗体がある限り、それに特異的にウイルスを検出することが可能であり、汎用性の富んだウイルス検出 キット化が可能です。

関連書籍等:

社会連携へ向けたアピールポイント

- □ Chowdhury et al., Nature Communications, 10:3737 (2019)
- Chowdhury and Enoch Y. Park, Sensors & Actuators: B. Chemical, 301, 127153 (2019).
- ☐ Takemura et al., Journal of Nanobiotechnology, 18,152 (2020).
- ☐Ganganboina et al., Biosens. Bioelectron., 170(15), 112680 (2020).

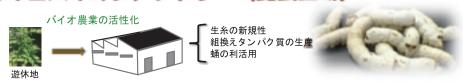
龍洙 朴 グリーン科学技術研究所

その他の社会連携活動

- ・各種感染症原因ウイルスの検出
- イムノクロマト法
- ・ナノ粒子の合成

- ・食中毒・呼吸器疾患関連ウイルスの高感度かつ 迅速検出技術の開発
- ・蚊媒介性ウイルス疾患の診断に向けた選択的かつ 高感度多検体ウイルス検出技術の開発

研究の概要


【代表的な研究テーマ】

シルクロードからバイオロードへ~カイコバイオファクトリー~

キーワード:カイコ、タンパク質、バクミド、ワクチン

カイコは太古からシルクという素晴らしい繊維で人類を豊かにしました。現在、カイコは様々なタンパク質を生 産する昆虫工場として有望視されています。2019年発生したCOVID-19は、人類の生存を脅かしており、ワク チンの開発が喫緊の課題です。カイコはワクチンとして注目されるウイルス様粒子(VLP)を生産することができ ます。既にネオスポラ症に対する2つの抗原提示VLPを作製しワクチンとして検証しました。現在、デングやマ ラリア感染症を予防するVLPを開発中であり、クルマエビ用経口ワクチンとして動物試験中です。今後、遊休地 の再利用により先端農業を展開できれば地方に合った地方創生の糸口となります。

カイコバイオファクトリー(昆虫工場)

カイコバイオファクトリー

シルクロード からバイオロードへ

・特筆すべき研究ポイント:

- □カイコは口からタンパク質を吐き出すほど優れたタンパク質生産能を有します。
- □カイコに外来遺伝子を導入するバクミド発現系を世界初開発
- □ネオスポラ症に対する抗原2種類をウイルス様粒子の表面提示に成功
- □複数の抗原をウイルス様粒子の表面上に効率的提示方法を開発中であり、これが完成できれば、さらに効率的 ワクチンの開発が可能です。

• 関連書籍等:

社会連携へ向けたアピールポイント

- ☐ "Silkworm Biofactory Silk to Biology", Edited by Enoch Y. Park and K. Maenaka, CRC Press Taylor & Francis Group, December 2019. ISBN: 978-1-138-32812-9
- □加藤竜也、朴 龍洙:クローズアップ実験法"カイコバクミドを用いたヒトタンパク質の効率的発現法"、洋土 社、実験医学、33/9, p1443-1447、2015年6月

その他の社会連携活動

龍洙 朴 グリーン科学技術研究所 教授

- ・多抗原提示型ウイルス様粒子による蚊媒介感染症のワクチン開発
- ・カイコバイオリアクターによる高付加タンパク質の生産

- ・高次タンパク質生産
- ・カイコ遺伝子発現系
- ・カイコの高度利用可能

へ向けたアピールポイント

【代表的な研究テーマ】

家事分担の変容と公平感情の研究

社会調査研究

キーワード:家事分担、変容、公平感情、社会調査

1. 家事分担の変容と公平感情の研究

夫婦間の家事分担はいつ、どのように変化するのか、の解明を試みる研究に取り組んできました。主な結果と して、生活の状況(1日の時間の使われ方やそれぞれの在宅時間、体調等)の変化によって、家事分担の形に変化 がもたらされることが見えてきています。また、ご夫婦の家事分担への関わり方(家事を行っている分量や夫婦 互いの働きかけ等)が、その分担への不平不満の気持ちを抱くかどうかを左右することも研究結果として示され てきました。(右下の図は、実施した研究の結果の一部です。稼得と家事育児の分担スタイルと、家事分担への 満足度との関係を示しています。)

2. その他の研究活動

家事分担の変容と公平感情の研究の他には、 子どもの公平観の発達の研究に取り組んでい ます(学外研究者との共同研究)。作業を行っ て得られる報酬や誰かが行う必要のある作業 を、どのように分配あるいは分担するのが良 いと思うか、といった問いについての判断を 理解しながら、その判断の内容と過程が年齢 発達とともにどのように変化していくのかを 明らかにしようとしています。

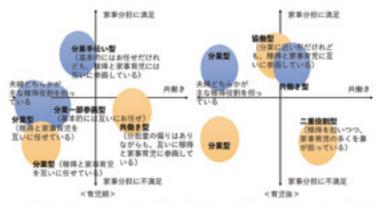


図1. 生活営事の分担方法と家事分担の当足感(維導と家事と育児の送行政会いを基に作成したグループを、家事の 30日 エルローテンピンはことをデコロン共在しています。日本では1日はロンドロルドルににクタープを、原子 連旦度と共働きか否かの始によって整理して影響した。黄色が女性、水色が秀性のプループ。 左側は青沢後の終展の転換 であり、右側は青沢後の時期の結果。様将、軍事、青児、介護等の生活に必要な軍事を「生活事事」と総称。) ※(参照・サトウ,2013)上リ作成

家事分担の変容と公平感情の研究では、質問紙調査とインタビュー調査の両方を用いてきました。 その経験を活かして、下記の作業に関してはご相談に応じられると考えています。

- ・各種調査の設計と計量分析
- ・質問紙調査の自由記述のまとめ
- ・インタビュー調査の語り内容の整理

関連書籍等:安田裕子・滑田明暢・福田茉莉・サトウタツヤ(編)(2015). TEA 実践編 複線径路等至性プローチを活用する. 新曜社

近年では、男女共同参画に関わる調査(人文社会科学系研究者の男女共同参画実態調査(第1回)(人文社会科学 系学協会男女共同参画推進連絡会:GEAHSSによって実施))の分析にも参加しました。家事分担と働く環境や キャリア形成等に関する調査研究に興味とご関心をお持ちの方がいらっしゃいましたら、ぜひお声かけください。

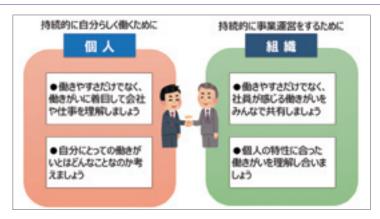
その他の社会連携活動

·公益社団法人 日本心理学会 男女共同参画推進委員会委員

滑田 明暢

学術院融合・グローバル領域 大学教育センター 講師

- ・家事分担や公平感情についての調査研究
- ・人の意識や行動、経験の理解を試みる社会調査


キャリアにおける個人と組織とのより良い関係 効果的なインターンシップやプロジェクト学習

キーワード:キャリア、人材、働きがい、産学連携教育

キャリアにおける個人と組織とのより良い関係

生産人口が減少し、個人の価値観や働き方が多 様化するなか、個人と組織(特に企業)との関係 はこれまでどおりにはいきません。

個人が働きやすさだけでなく、自分らしい働き がいを感じることができれば組織の持続的な事 業運営につながると考え、そのより良い関係を 追究しています。

効果的なインターンシップやプロジェクト学習

本来、産学連携教育の一環であるインターンシップやプロジェクト学習は、キャリア教育や就職・採用活動と 結びついてきました。しかし、組織、大学、学生、それぞれの期待や思惑が一致しないと十分な効果が得られ ず、負荷ばかりかかってしまいます。それぞれの立場にとって効果的なインターンシップやプロジェクト学習 (Project Based Learningや課題解決)のあり方を実践的に追究しています。

・学校教育におけるキャリア教育・探究学習

地域の企業や社会人との連携により、教員負担を下げながら効果の上がる授業やプログラムを一緒に考えます。

・企業等における人材確保・育成

多くの企業が採用活動や人材育成の課題を抱えています。大学での就職支援を通してみえる学生像なども伝え ながら、職場の魅力発見・育成力向上をお手伝いします。

・地域内における対話の場づくり

2013年から未来志向の対話の場である「静大フューチャーセンター」を学生たちと運営し、地域内のステーク ホルダーがつながる活動をしてきました。

・学生と連携した課題解決プログラム

課題解決を通して学生の成長を促すプログラムづくりに取り組みます。

社会連携へ向けたアピールポイント

宇賀田 栄次 学術院融合・グローバル領域 学生支援センター 教授

■ その他の社会連携活動

- ・文部科学省「地方創生人材育成プログラム構築事業」選定委員・評価委員
- ・NPO法人仕事楽ネットワーク 理事長
- ·NPO法人静岡情報産業協会 理事
- ・島田市人材育成プラットフォーム 座長

- ・学校教育におけるキャリア教育・探究学習
- ・企業等における人材確保・育成
- ・地域内における対話の場づくり
- ・学生と連携した課題解決プログラム

高等教育機関における障害学生支援

キーワード:障害学生支援コーディネーター、合理的配慮、ピアサポート

●障害等のある学生が学ぶ共生型キャンパス

2016年に施行された「障害者差別解消法」を受けて、各大学等は障害学生が、障害のない学生と同じ条件で修 学する機会を得るために必要な変更・調整をおこなう「合理的配慮」が求められるようになりました。各大学等で 行われている支援体制の整備と取り組み状況を収集し、各障害に対応した修学機会の向上を研究しています。

●障害のある学生と障害のない学生が支え合うキャンパス

障害学生支援の取り組みの1つであるピアサポート(仲間同士で支え合う)という相互援助の活動が注目される なかで、障害のある学生と障害のない学生の双方にとっての人間形成にどのような効果をもたらすかを研究して います。

社会連携へ向けたアピールポイント

障害学生支援の取り組みは1つの大学で課題解決を目指すのでなく、複数の大学がネットワークを形成し、お 互いのGood Practiceを共有することで、よりよい効果を生み出していきます。

静岡県内においては静岡県障害学生支援担当者会、東海4県においては東海地区障害学生支援フォーラムが形 成され、現場の支援担当者による実践報告の場が展開されています。

また昨今は、在学時の修学支援だけでなく、高校から大学への接続の中での移行支援、大学と地域の就労移行 支援機関等が連携しながらの就職支援の動きも進められ、入学前から卒業後にかけてのいわゆる「エンロールメ ント・マネジメント」の中で切れ目のない障害学生支援が注目されてきています。

そのような動きの中で、障害学生支援に関わる地域のキーパーソンが点から線へ、線から面につながり、有機 的につながることで温度差を解消して、障害のある学生も障害のない学生も共に学び、共に成長する環境を目指 していくことを皆さんと築いていきたいと思います。

生川 友恒 学術院融合・グローバル領域 学生支援センター 准教授

その他の社会連携活動

- ・東海地区障害学生支援フォーラム 役員
- ·静岡県障害学生支援担当者会 幹事
- ・ふじのくにユニバーサルデザイン推進委員会委員

■ 相談に応じられる関連分野

- ・高等教育機関における障害学生支援の体制整備や事前的改善措置に関する こと
- ・障害学生支援に関わる大学間ネットワークに関すること

大学院・研究所・センター等

動画を中心とした研究・創作活動(~撮影・編集・プログラミング・分析~)

機械・深層学習を用いた動画特徴量分析

キーワード:動画特徴量、オンライン教育、動画広報、機械・深層学習

本研究室では、研究対象を動画とし、主に2つの研究テーマを実施しています。

1. 動画を中心とした研究・創作活動(~撮影・編集・プログラミング・分析~)

大学の紹介や広報を目的とした「静大テレビ」や、 オンライン教育で扱う教材動画を、撮影、編集、 Web公開(プログラミング)、効果分析、します。 これら作業循環の中で動画の社会的効果を分析し ます。

研究の概要

2. 機械・深層学習を用いた動画特徴量分析

YouTubeやオンライン教育で用いるさまざま な動画には、視聴数の差があります。人気がある 動画は視聴数が多くなります。この「人気」の原因 (特徴量)は何でしょうか。本研究では、動画に含 まれる特徴量を機械・深層学習を用いて分析・特 定し、この特徴量が動画での広報・教育にどのよ うな効果をもたらすかを探求します。

特筆すべき研究ポイント:

静大テレビでは、動画のアクセス分析から、視聴者が求める内容・タイミングに適した公開を実施することで、 視聴者満足度向上やサイトアクセス数が毎年増加しています。動画制作は学生サークルの一環として取り組んで おり、この経験を活かし、多くの卒業生がTV局や出版社などで活躍しています。

地方自治体と共同で研究を推進しています。静大テレビの自治体版を開発し、地域間で動画を取り巻く研究活 動を実施しています。

• 関連書籍等:

社会連携へ向けたアピールポイント

- ・大学テレビジョンの作り方と運用方法(ISBN-13:978-4864740487)
- ・教育動画に含まれる特徴の教育作用効果分析(JSET R2.12/12 研究発表会)

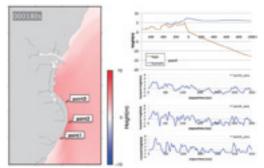
正樹 永田

学術院融合・グローバル領域 情報基盤センター 総合科学技術研究科工学専攻 准教授

その他の社会連携活動

- ・サイエンティフィック・システム研究会 システム技術分科会委員(2020年4月~)
- ・静岡県袋井市 オンラインLab整備事業 座長(2020年10月~)

- ・動画分析(機械・深層学習)
- ・Webシステム
- 教育システム


津波数値シミュレーションを用いた地域の津波災害リスク評価

津波防災対策の技術開発、津波防災地域づくり推進計画の策定支援

キーワード:津波防災対策、津波数値シミュレーション、防災地域づくり、避難計画

1. 自然現象としての津波の理解

静岡大学に設置した全長約30mの実験水路を用いて、津波堆積 物の形成過程を再現し、津波堆積物と来襲津波の特性を把握する研 究しています。実験計測に基づいた津波堆積物と来襲津波の特性に より、津波堆積物調査と津波数値シミュレーションから来襲津波を 推定する手法を構築し、地域社会に適切な津波防災対策を進めるた めの新たな資料とすることを目指しています。

2. 津波災害過程の解明と津波防災対策技術の開発

津波の来襲によりどの様に被害が発生するのか、現地調査・モデ ル実験・数値シミュレーションを用いて津波災害過程を解明し、評 価手法を開発しています。数値シミュレーションを用いた津波災害 リスク評価や海岸林等のグリーンインフラを活用した津波防災対策 技術 (Eco-DRR) の研究開発も進めています。

3. 地域と連携した総合的な津波防災対策の推進手法の検討・提案

国、県、市町と連携し、津波防災地域づくり推進計画の作成し、地域社会と連携した津波に強い地域づくりを 進める方法論を研究しています。地域における適切な津波災害リスクマネジメントの実現を目指し、地域の魅力 向上と防災上の価値の両立による持続可能な地域づくりとしての津波防災対策の推進手法の構築を目指していま す。津波防災地域づくり推進計画の作成や個別津波避難計画の作成についても提案を行なっています。

- ・東日本大震災では甚大な津波災害が発生しました。静岡県では南海トラフ地震による甚大な津波災害の可能性 が指摘されており、社会全体で被害軽減に向けた対策の推進が求められています。地域社会を支える自治体や 企業と連携しながら、各地域や組織に適した新たな津波防災対策の検討支援を行っています。
- ・当研究室では、津波数値シミュレーションにより地域に来襲する津波を評価し、詳細な地域社会データに基づ いた津波防災対策の科学・技術・政策の側面から研究を行っています。また、社会人向け防災人材育成プログ ラムであるふじのくに防災フェロー養成講座において行政職員などから受講生を受け入れています。静岡大学 では数少ない土木工学を専門としており、津波防災を中心として幅広い社会ニーズに対して工学的、社会制度 的な手法を用いて解決策の検討を行っています。

関連書籍等:

静岡の大規模自然災害の科学(共著), TSUNAMI-To survive form Tsunami-(共著)

賢治 原田 学術院融合・グローバル領域 防災総合センター

准教授

その他の社会連携活動

国土交通省駿河海岸保全検討委員会(委員)、環境省災害廃棄物対策推進検討会地域間協調 WG(委員)、静岡県防災・原子力学術会議津波分科会(委員)、松崎町津波防災地域づくり 推進協議会(会長)、静岡市水防委員会(委員)等、行政や地域と連携した調査研究および社 会連携活動を数多く実施

相談に応じられる関連分野

- ・地域の津波災害リスク評価
- ・グリーンインフラを活用した津波防災
- ・津波防災地域づくり推進計画の作成支援
- ・避難計画作成支援、避難能力向上訓練支援

社会連携へ向けたアピールポイント

環境移行と学校適応

学校適応と生徒指導

キーワード: 学校適応と生徒指導、児童期、思春期、環境移行、発達

以下の3つの研究に関わってきました。

1つ目は、小・中学生の問題行動といった学校適応に関する研究です。小・中学生の問題行動に対して、教師 はどのように関わることが必要なのか、生徒指導との関連について調べています。登下校や休み時間などのちょっ とした隙間のような時間に、教師が子どもに声をかけるといった関わりを持つことが学校適応感を促進する上で 重要なことが分かりました。学校適応を促進する時期としては、特に中学2年次に上記のような関わりが必要で あることが明らかになっています。

2つ目は、学校統廃合と学校適応に関する研究です。自分が所属している学校がなくなることを、子ども達は どう捉えているのか、学校統廃合を子どもの視点から捉えました。

公立中学校における統廃合のケースでは、規模の小さい学校出身の中学3年生において、統廃合前後でストレ ス感の上昇や学校享受感の低下が明らかになりました。学校統廃合による環境の変化に戸惑っている生徒が一部 にいることが分かりました。

3つ目は,小中一貫教育と学校適応に関する共同研究(代表:和光大学梅原利夫)です。小中一貫校は,子ども の発達にどのような影響を及ぼすのかを非一貫校と比較しながら調べています。小中一貫校の場合,小学校高学 年から中学校文化が前倒しされている可能性など、小中一貫校が持つメリットとデメリットが明らかになってい ます。

1歳児健診や3歳児健診の発達相談員や小中学校での相談員など、実践とのつながりを持ちながら「片手に理 論、片手に実践 | を意識して調査を進めています。

関連書籍等:

研究の概要

社会連携へ向けたアピールポイント

金子泰之 2018 中学生の学校適応と生徒指導の研究 ナカニシヤ出版

大久保智生・牧郁子編著(2018 教師として考え続けるための教育心理学(ナカニシヤ出版(環境の変化と学校) 適応p110-p115を執筆)

都筑学編著(2021 他者を支援する人はいかに成長するのか-心理臨床,福祉・障害,教育・保育の現場で働く 支援者の奇跡- ナカニシヤ出版

(支援者になっていくこととは? p54-p60を執筆)

梅原利夫・都筑学・山本由美 2021 小中一貫教育の実証的検証 花伝社

(第4章 第3期調査(2018~2019年度)における調査結果p48-p63を執筆)

(第8章 子どもの発達段階の節目を保障できる小中一貫教育とはp93-98を執筆)

■ その他の社会連携活動

- ・静岡市犯罪等に強いまちづくり委員
- ・子どもの権利条約推進委員会研究協力者
- ·東京都青少年規範意識調査(監修)
- · 東京都内小学校校内研修

金子 泰之

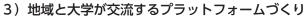
学術院融合・グローバル領域 教職センター 講師

- ・小・中学生の学校適応について
- ・学校統廃合などの環境移行について
- ・小中一貫教育について

【代表的な研究テーマ】

生涯学習・社会教育に関わる調査研究

大学と地域の連携


キーワード: 生涯学習、社会調査、地域づくり、域学連携

1) 生涯学習・社会教育に関わる調査研究

幼児から高齢者まで、人が互いに学び合い、高め合う関係をどう つくりあげるかを研究テーマとし、会話分析等の質的調査とアン ケート等の量的調査を組み合わせた調査研究を行っています。ま た、地域社会において学び合う関係がどうつくられているか、そ の関係性をどう活性化するかを研究テーマとしています。

2) 大学と地域との連携

大学の地域連携の窓口として、「地域連携応援プロジェクト」「地 域課題解決支援プロジェクト」を担当し、学生・教職員が、地域 社会における課題を手がかりに地域住民と交流し、学び合う取組 をコーディネートしています。

上記2つの取組の中で、地域における、また地域にかかわる多様 な主体が交流し、学び合う学習ネットワークのあり方、ならびに 多様な参加のあり方を許容しながら継続的に関わり合うプラット フォームのあり方を研究しています。

東伊旦町領防団 第六 分 团 器 具 置 揭

- ・全国生涯学習市町村協議会と連携し、文科省委託「生涯学習推 進のための地域政策調査研究」を受託、「大学-地域連携」「継続 的な地域づくり」をテーマに160自治体、104大学、550市民 団体を対象とした調査研究を行いました。
- ・大学-地域連携窓口の活動として大学開放および地域連携事業 の企画・運営を行い、学生・教職員が地域と関わり、協働する 取組を支援しています。

• 関連書籍等:

『質的調査法を学ぶ人のために』『会話分析への招待』世界思想 社、『<社会>を読み解く技法~質的調査法への招待』福村出版、 『大学開放論』大学教育出版。

■ その他の社会連携活動

- ・文部科学省「開かれた大学づくりに関する調査」有識者会議委員(2013年~)
- ・国立中央青少年交流の家・運営協議会・委員長(2016年~)
- ・静岡県生涯学習審議会・会長(2006年~2012年)
- ·静岡県社会教育委員会・会長(2012年~2018年)
- ・静岡県学校・家庭・地域連携推進委員会・委員長(2011年~)

- ・生涯学習・社会教育
- ·大学-地域連携
- ・社会調査

阿部 耕也 地域創造教育センター 未来社会デザイン機構 地域創造学環

研究の概要

社会連携へ向けたアピールポイント

【代表的な研究テーマ】

地方都市中心市街を活性化するためのエリアマネジメント 減災教育や観光振興に災害遺構を生かすためのジオパーク活動

キーワード:中心市街地活性化、ジオパーク、地域遺産、エリアマネジメント

1. 地方都市中心市街を活性化するためのエリアマネジメントに 関する研究

人口減少時代の市街地形成の概念としてコンパクトシティへの 転換が求められています。中心市街地における低未利用地の再 編・マネジメント手法、都市機能を誘導する地区のあり方、地域 遺産を活用した都市再生手法など、計画技術に関することを研究 しています。

2. 減災教育や観光振興に災害遺構を生かすためのジオパーク活 動に関する研究

巨大災害で疲弊した地域経済を回復するには、内発的な経済復 興と併せて人的復興が必要です。復興まちづくりで減災教育や観 光振興に災害遺構を生かすために地域住民が災害遺構の価値を見 出すプロセスと公民連携のあり方について明らかにすることを研 究しています。

- 1.特定のエリアにおいて継続的な視点で地域づくりから地域管理まで一貫して行うエリアマネジメントを実施 することで、地域住民が地域遺産の存在と価値を見出しながら誇りと自信を持つようになり、来訪者が増加 することで地域経済が活性化される ことです。
- 2. 巨大災害で疲弊した地域を再生するには、地域住民が主体となった内発的なジオパーク活動と併せて、地域 内外の大学と社会関係資本(包括連携協定)を築くことが必要です。また、産学官民からなるジオパーク推進 協議会を通して、復興が効率・効果的に進められ、いち早く再生を果たすことができることです。

■関連書籍など

- ・小林重敬・内海麻利・村木美貴・石川 宏之・李三洙『エリアマネジメント』学芸出版社
- ・石川宏之「持続可能な地域社会をつくるために博物館活動を通したボトムアッププロセスのあり方」日本ミュー ジアム・マネジメント学会研究紀要第25号,pp.13-21,2021年

石川 宏之 学術院融合・グローバル領域 地域創造教育センター 准教授

その他の社会連携活動

- ・地域遺産を活かしたまちづくり(ジオパーク、エコミュージアム)
- ・地方都市における中心市街地の活性化
- ・博物館・美術館の管理・運営

- · 静岡県住宅政策懇話会委員
- ・富士市建築審査会委員
- ·静岡市都市再生整備計画事業評価委員会委員
- ・八戸市是川縄文館運営協議会副会長

研究の概要

社会連携へ向けたアピールポイント

オーストラリア先住民の生活世界の動態と変化に関する研究

先住民/少数民族の文化の観光資源化に関する研究

キーワード: 先住民/少数民族、文化伝統、社会変化、観光開発

(1)オーストラリア先住民の生活世界の動態と変化に関する研究

オーストラリア大陸には、アボリジニと呼ばれる先住民の人びとが暮らしています。18世紀後半、アングロサ クソン系の人びとの入植以来、彼らの社会文化・生活世界はめまぐるしく変貌を遂げてきました。近年は交通・ 情報通信技術の発達もめざましく、人・モノ・情報等の移動はさらに活発となっています。

このような状況の中で、2007年以来、オーストラリア北部にあるアボリジニ・コミュニティで、フィールド ワークにもとづく調査研究を続けています。これまで家族経済、狩猟採集、美術工芸品などの調査に従事してき ました。とりわけそこでのアボリジニの社会関係とそのネットワークの動向を探りながら、彼らの生活世界の動 態とその変化について研究しています。

(2)先住民/少数民族の文化の観光資源化に関する研究

資本主義経済のグローバルな展開について考えるための事例の ひとつとして「観光」という現象に注目し、とりわけ先住民/少数 民族の文化の観光資源化が先住民/少数民族社会および主流社会 にいかなる影響を及ぼすのかという視点から調査研究を行ってい ます。オーストラリアを主要なフィールドとし、加えて、比較の 観点からフィリピン・ルソン島北部の少数民族の社会をフィール ドにこれまで調査研究を行ってきました。

・「ワンロード-現代アボリジニ・アートの世界」大阪大会実行委員会委員:2010年にオーストラリア国立博物 館で開催された「イワラ・クジューキャニング・ストック・ルート展|の日本での巡回展「ワンロード展|(於: 国立民族学博物館、2016年6月9日~7月19日)の企画運営に携わった。

▶ 関連書籍等

川崎和也 2016年「アボリジニ社会における美術工芸品づくりの経済学-オーストラリア北部ティウィの事 例から1、『現代社会研究』第2号:147-163.

川崎和也 2020年「フィリピン、北部ルソン島イフガオ州の観光開発-「周辺世界」の社会経済開発に関する 予備的研究」、『静岡大学地域創造教育研究』創刊号:11-24.

川崎和也 2021年「観光文化としてのアボリジニ文化-ジャプカイ・アボリジナル・カルチュラル・パーク の事例から」、『静岡大学地域創造教育研究』第2号:1-15.

川崎和也 2021年「オーストラリアにおける『啓蒙』としてのアボリジニ観光-ティウィ・ツアーの事例 から」、越智郁乃・関 恒樹・長坂 格・松井生子編『グローバリゼーションとつながりの人類学』、七月社、 pp317-341.

■ その他の社会連携活動

- ・御前崎スポーツ振興プロジェクト事業推進協議会委員
- ・静岡県立相良高等学校 学校改革推進プロジェクトチーム委員

川崎 和也

地域創造教育センター 特任助教

- ・先住民/少数民族の問題
- ・質的調査を主とするフィールドワーク論
- エスノグラフィ論

研究の概要

社会連携へ向けたアピールポイント

【代表的な研究テーマ】

SDGsからみた食の教材化と教育旅行の開発

防災意識向上のためのオリジナル教材開発・研修

キーワード: SDGs、システム思考、ESD、教育旅行、防災意識

1. SDGsからみた食の教材化と教育旅行の開発

食と深く関わる一次産業の振興には、地域活性化を中心として、 消費者保護や雇用機会の創出、再生エネルギー普及など様々な課 題が相互に関係しあっています。それらの全体像を通してみて初 めて、食や一次産業の価値が理解されます。

生産・流通・消費という食にまつわる一連の流れをたどりなが ら、持続可能な地域社会づくり(SDGs)につながる体験型の教材 および教育旅行を共同開発します。

生産地と工場見学の総合コーディネー (イメージ)

2. 防災意識向上のためのオリジナル教材開発・研修

自然災害に対する防災意識の向上は急務の課題です。

地域の実態に即したケーススタディーを積み上げることが重要 ですが、それとともに、新たな視点からの防災を見つめなおし、「慣 れ|や「飽き|からの脱却が求められています。

本研究では、静岡河川事務所、静岡地方気象台、静岡県庁等と 連携し、地域の状況に応じた地元密着型の防災教育を行っていま す。特に、近年の異常気象に対して有効な、スマートフォンや PCを用いた最新の防災情報の収集トレーニングにも対応してい ます。

防災情報教材 (テレしず2017年12月11日放送)

特筆すべき研究ポイント:

国連が定めた「持続可能な開発目標」(SDGs)の考え方を基礎と した研究教育活動に取組んでいます。SDGsには、多方面にわ たる様々な活動を「つなげる」「可視化する」といった点に特色が あります。

各種の事業は、業界や組織全体を見通しながら展開されるべき ですが、実際には縦割りの専門性の中で日々展開されています。 ここに、「教育」という"色のついていない"中間的なアクターを 介在させることで、双方の意思疎通のきっかけや、健全な広報 の役割を持たせることができます。

(ジオパークで取り組まれている教育活動の例。 下から上にかけて展開することでSDGsを構成)

山本 隆太 地域創造教育センター 准教授

■ その他の社会連携活動

- ・日本ジオパークネットワーク運営会議 教育ワーキンググループリーダー
- ・伊豆半島ジオパーク 教育部会委員
- ・日本地理学会地理オリンピック実行委員

- ・郷土学習 ・防災教育
- SDGsに関する教育
- ・ドイツ語圏の各種動向調査

【研究テーマ】

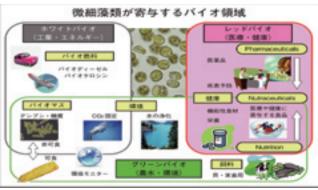
ブロジェクトの概要

海洋微細藻類・微生物の共生による水産資源の持続性構築と バイオ資源の高度化

キーワード:微細藻類増殖・機能性物質利用・カーボンニュートラル・ブルーカーボン

大きな打撃を受けている駿河湾の水産資源、特にサクラエビやシラス、さらには磯焼けの影響によるウニやア ワビ等の減少、これらの資源を回復し、持続化してく鍵は、水質環境の改善とプランクトンの増殖にあります。 プランクトン、微細藻類の増殖は、食物連鎖による魚介類の資源量の増加や微生物の増殖による機能性物質の生 産を促進します。微細藻類には多くの種があります。駿河湾の主な微細藻類は珪藻、円石藻、渦鞭毛藻、藍藻で す。このうちサクラエビ等の魚介類の餌として重要なのは珪藻です。珪藻の増殖にはケイ素が必要です。微細藻 類の増殖に必須な栄養塩、ケイ素は駿河湾の水深100m以深の深層水に硝酸塩、リン酸塩や微量金属の鉄、亜鉛 等共に豊富にあります。この深層水と自然光を利用すれば微細藻類の増殖を自然にやさしいエコ・脱炭素技術に より行うことができます。駿河湾では20mの表層水と270mの深層水を2000トン/日くみ上げています。深層 水は水温が低く、栄養塩に富み、汚染物質が極めて少ない清浄な海水です。駿河湾深層水は植物プランクトンの 種が存在しています。汲み上げた深層水に20℃前後の水温と自然光で3日後には珪藻が1000倍ほど増殖します。 植物プランクトンの増殖と同時に動物プランクトンと微生物も増殖します。微生物はビタミンB12、アミノ酸、 珪藻はDHA、EPA、グリセーロール等の様々な機能性物質を生成します。硝酸塩とケイ酸塩の濃度比を変えて、 珪藻の異なる種や異なるサイズを生産する技術を開発しました。餌生産の技術と機能性物質の高度化利用の技術 の推進による駿河湾の水産資源の持続的なシステムの構築と海洋バイオ産業の創成を目指します。

微細藻類生産装置


珪藻

培養装置

プロジェクトを推進することにより受益者の第一は漁協(静岡漁連・由比港漁協・大井川漁協・サクラエビ組 合等)の漁師等の水産関係者、次に加工業者(蒲原等)や機能性物質の利用等による食品関係(焼津水産化学。鈴与 等)の人々です。静岡県の水産業の安定化による行政や流通に関する人々、新たなビジネス(ブルーエコノミー) による産業振興、特に培養技術 (LEDや水槽の開発・モニタリング技術等) に関係する人々もまた受益者です。市 民も静岡県の豊な恵みを堪能できるだけでなく、郷土の豊かさを実感できます。環境や海洋の生物多様性の保全、 自然生態系の保全・再生によるカーボンニュートラル社会への貢献に関係する人にも重要な事業となります。大 学等の研究機関で働く研究者は学術的解明が進み、新たな技術開発が可能になり、新たな研究成果を得ることが 可能になります。「誰一人取り残さない」限りなく多くの人々が受益者になることが可能な課題である。微細藻類 の増殖によるサクラエビの人工養殖やサクラエビの動態・駿河湾生態系の調査研究ではすでに由比港漁協と共同 研究を推進し、成果を地域と共有しています。またシンポジウムの開催と更なる再生への研究を推進しています。

プロジェクトリーダー

鈴木 款 創造科学技術大学院・ サステナビリティセンター 特任教授

プロジェクトメンバー

カサレト ベアトリス 創造科学技術大学院 特任教授

三重野 哲 理学研究科 教授

藤原 健智 創造科学技術大学院 教授 サステナビリティセンター 特任助教 利幸

圭太 創造科学技術大学院 研究補佐員

相談に応じられる関連分野

海洋環境保全の調査研究 海洋微細藻類の生産や生態系 海洋微細藻類の多角的利用 海洋生態系によるカーボンニュートラル 微細藻類生産の機能性物質の利用

外国籍市民を含めた社会参画教育の実践的研究

日本人と外国人の若者が共に地域の課題に取り組む共創型合宿

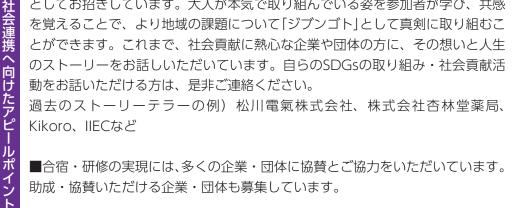
キーワード: 多文化共生、地域の担い手育成、社会参画、地球市民

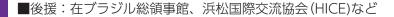
■外国籍市民との共生社会を目指して

浜松市は90か国から2万5千人以上の外国人が暮らす外国人集住都市です(2021年10月時点)。こうした外国人 は、今後地域の担い手として、日本人と共に地域を支えるとパートナーとなることが期待されています。そこで、 浜松市に暮らす日本人・外国人の若者が、共に住む地域の問題に一緒に取り組む共創型社会参画教育プログラム を開発・実施して、その教育効果を研究しています。

■共創型社会参画教育プログラム「ダイバーシティ・キャンプ in 浜松」

ブラジル人団体IIECと共に2019年から毎年実施しているこの社会参画教育プログラムでは、英語の対話を通し て参加者の多様性を体験しながら、対等な立場で地域の課題について共に考えます。出身地や国籍と関係なく「地 球市民」として、1人ひとりの自己実現と社会貢献への意識を高めることを目標としています。2019年は6カ国 43名(日本人22名・外国人21名)の中学生~大学生の若者が、2泊3日の合宿を通して地域の課題について取り 組みました。2020年・2021年は、宿泊のない2日間の研修として、それぞれ24名、22名が参加しています。





■プログラムには、地域の課題に本気で取り組んでいる方々をストーリーテラー としてお招きしています。大人が本気で取り組んでいる姿を参加者が学び、共感 を覚えることで、より地域の課題について[ジブンゴト]として真剣に取り組むこ とができます。これまで、社会貢献に熱心な企業や団体の方に、その想いと人生 のストーリーをお話しいただいています。自らのSDGsの取り組み・社会貢献活 動をお話いただける方は、是非ご連絡ください。

過去のストーリーテラーの例)松川電氣株式会社、株式会社杏林堂薬局、 Kikoro、IIECなど

■ その他の社会連携活動

- ・一社) グローバル教育推進プロジェクト(GiFT) ダイバーシティ・ファシリテーター (2016年~現在)
- ・異文化間情報連携学会理事(2019年~現在)

安冨 勇希

学術院 融合・グローバル領域 大学教育センター・ サステナビリティセンター

■ 相談に応じられる関連分野

- ・外国籍児童への学習支援
- ・地球市民教育
- · 多文化共生

海外の生物資源を利用して研究するときの手続

海外の生物資源で研究する場合、相手国への利益配分

キーワード:生物多様性条約、名古屋議定書、海外遺伝資源、アクセスと利益配分

1 海外の生物資源を用いて研究する教員と学生のお手伝い

海外には多くの魅力的な研究材料があります。 地球規模で人々の往来が盛んになっていますが、材料を保有 する国の人々は、自国の資源から得られる有償・無償の利益が自国へ適正に配分されるよう望んでいます。海外 の生物資源を研究材料とする場合、相手国の法令に従って、適正に日本に持ち込む必要があります。大学で研究 をする教員、学生の方々の海外生物資源の利用をお手伝いします。

2 地域の他大学や企業との連携

地域連携を強化する趣旨から、地域で研究活動をする大学、企業などの皆様と情報交換をしながら、海外生物 資源の利用と利益配分ができるよう、研修会の開催、交流などを進めます。

●仕事のポイント

海外の生物を利用する場合、名古屋議定書、カルタヘナ法、ワシントン条約、植物防疫(農林水産省)への対応 が欠かせません。特に名古屋議定書に従って相手国の法令を遵守するためには、刻々と変わる各国の情報収集が 必要です。情報収集を行い、相談者と供に手続きを行う窓口を目指します。

●地域との連携

令和2年度地域連携応援プロジェクト成果報告書(2021.3.291)p 48-50

11 「静岡県内の研究機関における 生物多様性条約対応に向けた情報共有と交流プロジェクト」 https://www.lc.shizuoka.ac.jp/cmsdesigner/dlfile.php?entryname=publication&entryid=00094&filei d=0000001&/report2020.pdf&disp=inline

●参考サイト

社会連携へ向けたアピールポイント

静岡大学 イノベーション社会連携推進機構 海外生物遺伝資源の利用 http://www.oisc.shizuoka.ac.jp/inside/abs-s/

寺嶋 芳江 イノベーション 社会連携推進機構 特任教授

その他の社会連携活動

日本きのこ学会評議員、研究・整備機構 森林総合研究所 研究推進評価委員、 沖縄県版レッドデータブック改訂委員、琉球大学熱帯生物圏研究センター市民公開講座 講 師、ベーシックきのこマイスター、2級ビオトープ計画管理士、野菜ソムリエ

相談に応じられる関連分野

生物多様性条約、名古屋議定書、カルタヘナ法、 ワシントン条約、植物防疫、協同研究契約(英文)

ベトナム人介護人材(EPA・留学生・技能実習生)に関する実態調査 □ ベトナムの高齢者ケア(政策・人材・コミュニティ等)に関する調査研究

キーワード:外国人介護士、ベトナム文化地域研究、アジアの高齢化・高齢者ケア

本研究では、日本の各地で急増したベトナム人介護士(EPA、留学生、技能実習、特定技能)の実態に関して 10年以上の追跡調査を行うとともに、ベトナム人介護士への支援活動(国家試験対策など)や受入れ担当者向け の支援・共同調査等をおこなっています。その上では、1990年代からベトナムでフィールドワークを行なって きた地域研究の蓄積が役立っています。また、日本のベトナム人介護士の中には、急速な高齢化が進むベトナム の高齢者ケアの発展へと貢献したいと考えている人も少なくありません。そのような「頭脳循環」を学術的実践的 に追求するために、ベトナムの高齢者政策や高齢者ケア人材育成の歴史・制度・実践についての調査研究とその 成果の社会への還元に取り組んでいます。

研究の概要

社会連携へ向けたアピールポイント

外国人介護職員同士が経験や悩みを共有する場に。

EPA(経済連携協定)を利用している場合は、母国で一緒に研修を受けて仲間意識 を持つことができたり、日本に来てからも定期的に集まる機会があったりして、同国出 身者同士で交流があります。しかし、技能実習生などの場合は、同じ地域にいたとして も自分の職場以外の人のことを知らないケースが多いようです。このような研修交流 会は、彼・彼女たちが知り合いを増やす良い機会だと思います。つながりができれば、 先に日本に来ている人が後から来た人に、自分の経験を共有することで、介護の仕事 や母国との文化の違いに一人で悩み苦しんでしまう事態を防げるはずです。

社会福祉しずおか「むすぶつなぐ」(2021年3月)

これまでに以下のような連携実績があります。

1. 連携先:NPO、産業界、自治体等

ベトナム人介護技能実習生受入れ事業者や介護留学生受入れ養成校などの受け入れ担当者 へのアドバイス(採用・養成・国家試験対策・文化・人権への配慮など)や、ベトナム人介護 労働者・留学生等を対象とした研修会の講師など

2. 連携先:産業界

ベトナムでの介護サービスの事業化を検討している民間企業などへのアドバイス

3. 連携先:厚労省、自治体

ベトナム人介護人材(EPA・留学・技能実習・特定技能)の実態(課題、ニーズなど)に関す る共同調査の実施など

研究成果などの 詳細は以下の QRコードから research mapを ご参考ください。

比留間 洋· 国際連携推進機構 特任准教授

その他の社会連携活動

- ·静岡県社会福祉協議会主催「外国人介護職員研修交流会」講師
- ・厚生労働省老人保健健康増進等事業「介護分野における技能実習制度の実態等に関する調 査研究」検討会及びワーキンググループ委員

相談に応じられる関連分野

- ・SDGs8.8「移住労働者、特に女性の移住労働者や不安定な雇用状態にある労 働者など、全ての労働者の権利を保護し、安全・安心な労働環境を促進する。」
- ・SDGs10.7「計画に基づき良く管理された移民政策の実施などを通じて、秩序 のとれた、安全で規則的かつ責任ある移住や流動性を促進する。」

循環型農業:アクアポニックス

キーワード: 循環型農業、水耕栽培、有機栽培、アクアポニックス

・アクアポニックス

地球環境に優しく、生産性が高い循環型農業として、アクアポニックスが世界中で導入されています。 アクアポニックスとは魚の養殖と水耕栽培を組み合わせた循環型農業システムで、土作り、水やり、除草、水替 えが不要で、新鮮な有機野菜と魚を育てるという食料生産から、家庭菜園・食育・園芸介護まで幅広い可能性が あります。

研究の概要

社会連携へ向けたアピールポイント

アクアポニックスは、魚と植物を1つのシステムで一緒に育て、魚の排泄物を微生物が分解し、植物がそれを栄 養素として吸収、浄化された水が再び魚の水槽へ戻るという循環型農業です。

学校教育に取り入れることで、循環型社会の理解が進むと思われます。このシステムは家庭から大規模施設まで 対応が可能で、体験型のシステムとしての発展も広がるものと期待されています。

静岡大学教育学部付属浜松中学の アクアポニックスシステム

■ 相談に応じられる関連分野

- バイオテクノロジー全般
- · 水耕栽培
- · 循環型農業

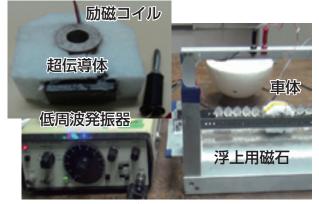
大橋 和義 技術部 教育研究第一部門 技術専門職員


青少年のための科学実験教材開発:超伝導演示実験

キーワード:理科離れ、テクノフェスタ、超伝導体の磁気特性、オンライン実験

青少年の理科離れが学会やマスコミ等でも問題視されています。ここで取り上げる「高温超伝導」は、科学者・ 学生はもとより社会的にも大きな関心が寄せられているテーマです。小中高校生向けの科学実験をテーマとし た [静岡大学テクノフェスタin浜松] において [不思議な超伝導:液体窒素で遊ぼう] と題した演示実験を行いまし た。 実験は、超伝導体(YBCO系) を液体窒素(-196℃)で冷却して、強力なネオジム磁石を使うと、磁石が超 伝導体上に浮上する「磁気浮上」や発泡スチロール球上の磁石が超伝導体に吊り下がる「磁束のピン止め効果」の実 験、また、30cmの磁石のレール上を浮上したまま車体(超伝導体)が左右に進む[リニアモーター]の実験です。 この演示実験は、地域貢献の一環として「青少年のための科学の祭典(静岡市科学館)」や「未来の科学者養成講座 (JST) | などでも行っています。

研究の概要


社会連携へ向けたアピールポイント

磁束のピン止め効果

リニアモーター

- ・高温超伝導実験は1987年(34年前)に日本で一番初めに静岡大学が物理学実験に取り入れており、テクノフェ スタにおいても超伝導演示実験を1996年(第1回、25年前)から実施してきました。今日的な物理学の研究の 一端を示す実験教材として高く評価されています。
- ・小中高校生向けの科学実験をテーマとした「静岡大学テクノフェスタin浜松|や青少年のための科学の祭典(静 岡市科学館) などでの演示実験を行っています。
- ・高温超伝導の座学と演示実験のオンライン化を行います。高大連携などの活用を検討します。

健二 増田 技術部 教育研究支援系 技術職員

相談に応じられる関連分野

- 科学実験の教材開発
- ・光計測(CCDカメラ・分光器を用いた分光スペクトル計測)
- ・光合成測定技術
- 高温超伝導体試料の作製技術

社会連携シーズ集 2022 索 引

(五十音順)

あ	赤	\blacksquare	信	_		G3, 4	 20
	冏	部	耕	也		G4, 11, 17	 102
い	池	\blacksquare	恵	子	•••••	G5, 11, 13	 80
	石	JII	宏	之	•••••	G4, 11, 17	 103
	伊	東	暁	人	•••••	G4, 8, 9	 6
	伊	藤	宏	=	•••••	G4, 10, 16	 21
	犬	塚		博	•••••	G7, 9	 54
	犬	塚		博	•••••	G2, 3, 9	 55
う	宇賀		栄	次	•••••	G4, 8, 11	 97
	内	Ш	秀	樹	•••••	G4	 22
お	大	瀧	綾	乃	•••••	G4, 10	 34
	大	橋	和	義	•••••	G15	 110
	大	原	志	麻	•••••	G3, 8, 9	 7
	大	本	義	正	•••••	G3, 9, 11	 35
	荻	野	達	史	•••••	G3, 5, 8	 8
か	甲	斐	充	彦	•••••	_	 56
	加	藤	雅	也	•••••	G2, 3, 15	 72
	加	藤	雅	也	•••••	G2, 3, 15	 73
	金	子	泰	之	•••••	G3, 4	 101
	兼	崎		友	•••••	G2, 14, 15	 91
	鎌	塚	優	子	•••••	G3, 4, 11	 23
	JII	崎	和	也	•••••	G8, 16, 17	 104
き	貴	\blacksquare		潔	•••••	G4, 11, 16	 9
	木	村	浩	之	•••••	G7, 9, 11	 48
	木	村	元	彦	•••••	_	 57
	木	村	洋	子	•••••	G13, 15	 74
	切	岩	祥	和	•••••	G2, 13, 15	 75
<	熊	野	善	介	•••••	G4, 9, 17	 24
	郡	司	賀	透	•••••	G3, 4, 5	 25
こ	小八	谷	真	也		G2, 3	 76
	後	藤	寛	貴		G3, 4, 17	 49
	小八	林	祐	_		G9, 15	 58
	近	蔟		滞		G3 6	 92

さ	佐々木	哲 朗	 G3, 9, 17	 84
	佐々木	哲 朗	 G3, 9, 17	 85
	佐々木	哲 朗	 G3, 9, 17	 86
	佐々木	哲 朗	 G9, 12, 15	 87
	真 田	俊 之	 G6, 8, 9	 59
\cup	篠原	和 大	 G4, 11, 15	 10
	篠原	和 大	 G4, 11, 15	 11
	島村	佳 伸	 G11	 60
す	スータ-	ー・レイ	 G5, 12	 36
	杉浦	彰 彦	 G9, 17	 37
	杉崎	哲子	 G3, 4, 17	 26
	杉山	岳 弘	 G3, 4	 38
	鈴木	款	 G9, 13, 14	 106
た	武 石	薫	 G7, 9, 13	 61
	竹 内	勇 剛	 G3, 4, 9	 39
	立 岡	浩 一	 G7, 13, 15	 62
	田宮	縁	 G4, 15, 17	 27
7	寺 嶋	芳 江	 G14, 15, 17	 108
ک	堂 囿	俊 彦	 G3, 4, 17	 12
	道羅	英 夫	 G2, 14, 15	 93
	徳 元	俊伸	 G3, 9	 88
	徳 元	俊伸	 G14, 17	 89
な	永 田	正樹	 G3, 4	 99
	中 塚	貴司	 G2, 3, 13	 77
	中村 美智太郎		 G4, 5, 10	 28
	永 吉	実 武	 G4, 8, 9	 40
	滑田	明暢	 G4, 5, 16	 96
	生 川	友 恒	 G4	 98
に	西田	昌史	 G3, 9, 17	 41
	西村	雅史	 G3, 4, 9	 42
は	朴	龍 洙	 G3, 6, 11	 94
	朴	龍 洙	 G3, 6, 11	 95

掲載の研究シーズについてご興味をお持ちの場合は、 下記窓口までお気軽にお問合せください。

窓口:静岡大学地域創造教育センター 地域連携室

E-mail:kyouiku-renkei@adb.shizuoka.ac.jp

URL: https://wwp.shizuoka.ac.jp/education-center/

TEL:054-238-4055,4056

FAX:054-238-4428

